Modeling and Simulating Software Architectures


Book Description

A new, quantitative architecture simulation approach to software design that circumvents costly testing cycles by modeling quality of service in early design states. Too often, software designers lack an understanding of the effect of design decisions on such quality attributes as performance and reliability. This necessitates costly trial-and-error testing cycles, delaying or complicating rollout. This book presents a new, quantitative architecture simulation approach to software design, which allows software engineers to model quality of service in early design stages. It presents the first simulator for software architectures, Palladio, and shows students and professionals how to model reusable, parametrized components and configured, deployed systems in order to analyze service attributes. The text details the key concepts of Palladio's domain-specific modeling language for software architecture quality and presents the corresponding development stage. It describes how quality information can be used to calibrate architecture models from which detailed simulation models are automatically derived for quality predictions. Readers will learn how to approach systematically questions about scalability, hardware resources, and efficiency. The text features a running example to illustrate tasks and methods as well as three case studies from industry. Each chapter ends with exercises, suggestions for further reading, and “takeaways” that summarize the key points of the chapter. The simulator can be downloaded from a companion website, which offers additional material. The book can be used in graduate courses on software architecture, quality engineering, or performance engineering. It will also be an essential resource for software architects and software engineers and for practitioners who want to apply Palladio in industrial settings.




Software Modeling and Design


Book Description

This book covers all you need to know to model and design software applications from use cases to software architectures in UML and shows how to apply the COMET UML-based modeling and design method to real-world problems. The author describes architectural patterns for various architectures, such as broker, discovery, and transaction patterns for service-oriented architectures, and addresses software quality attributes including maintainability, modifiability, testability, traceability, scalability, reusability, performance, availability, and security. Complete case studies illustrate design issues for different software architectures: a banking system for client/server architecture, an online shopping system for service-oriented architecture, an emergency monitoring system for component-based software architecture, and an automated guided vehicle for real-time software architecture. Organized as an introduction followed by several short, self-contained chapters, the book is perfect for senior undergraduate or graduate courses in software engineering and design, and for experienced software engineers wanting a quick reference at each stage of the analysis, design, and development of large-scale software systems.




Creating Computer Simulation Systems


Book Description

This book is an introduction to the High Level Architecture for modeling and simulation. The HLA is a software architecture for creating computer models and simulation out of component models or simulations. HLA was adopted by the US Defense Dept. The book is an introduction to HLA for application developers.




Modeling and Simulating Software Architectures


Book Description

A new, quantitative architecture simulation approach to software design that circumvents costly testing cycles by modeling quality of service in early design states. Too often, software designers lack an understanding of the effect of design decisions on such quality attributes as performance and reliability. This necessitates costly trial-and-error testing cycles, delaying or complicating rollout. This book presents a new, quantitative architecture simulation approach to software design, which allows software engineers to model quality of service in early design stages. It presents the first simulator for software architectures, Palladio, and shows students and professionals how to model reusable, parametrized components and configured, deployed systems in order to analyze service attributes. The text details the key concepts of Palladio's domain-specific modeling language for software architecture quality and presents the corresponding development stage. It describes how quality information can be used to calibrate architecture models from which detailed simulation models are automatically derived for quality predictions. Readers will learn how to approach systematically questions about scalability, hardware resources, and efficiency. The text features a running example to illustrate tasks and methods as well as three case studies from industry. Each chapter ends with exercises, suggestions for further reading, and “takeaways” that summarize the key points of the chapter. The simulator can be downloaded from a companion website, which offers additional material. The book can be used in graduate courses on software architecture, quality engineering, or performance engineering. It will also be an essential resource for software architects and software engineers and for practitioners who want to apply Palladio in industrial settings.




The Art of Software Architecture


Book Description

This innovative book uncovers all the steps readers should follow in order to build successful software and systems With the help of numerous examples, Albin clearly shows how to incorporate Java, XML, SOAP, ebXML, and BizTalk when designing true distributed business systems Teaches how to easily integrate design patterns into software design Documents all architectures in UML and presents code in either Java or C++




System Design, Modeling, and Simulation


Book Description

This book is a definitive introduction to models of computation for the design of complex, heterogeneous systems. It has a particular focus on cyber-physical systems, which integrate computing, networking, and physical dynamics. The book captures more than twenty years of experience in the Ptolemy Project at UC Berkeley, which pioneered many design, modeling, and simulation techniques that are now in widespread use. All of the methods covered in the book are realized in the open source Ptolemy II modeling framework and are available for experimentation through links provided in the book. The book is suitable for engineers, scientists, researchers, and managers who wish to understand the rich possibilities offered by modern modeling techniques. The goal of the book is to equip the reader with a breadth of experience that will help in understanding the role that such techniques can play in design.




Domain-Specific Processors


Book Description

Ranging from low-level application and architecture optimizations to high-level modeling and exploration concerns, this authoritative reference compiles essential research on various levels of abstraction appearing in embedded systems and software design. It promotes platform-based design for improved system implementation and modeling and enhanced performance and cost analyses. Domain-Specific Processors relies upon notions of concurrency and parallelism to satisfy performance and cost constraints resulting from increasingly complex applications and architectures and addresses concepts in specification, simulation, and verification in embedded systems and software design.




Software Architecture


Book Description




Large-Scale Simulation


Book Description

Large-Scale Simulation: Models, Algorithms, and Applications gives you firsthand insight on the latest advances in large-scale simulation techniques. Most of the research results are drawn from the authors’ papers in top-tier, peer-reviewed, scientific conference proceedings and journals. The first part of the book presents the fundamentals of large-scale simulation, including high-level architecture and runtime infrastructure. The second part covers middleware and software architecture for large-scale simulations, such as decoupled federate architecture, fault tolerant mechanisms, grid-enabled simulation, and federation communities. In the third part, the authors explore mechanisms—such as simulation cloning methods and algorithms—that support quick evaluation of alternative scenarios. The final part describes how distributed computing technologies and many-core architecture are used to study social phenomena. Reflecting the latest research in the field, this book guides you in using and further researching advanced models and algorithms for large-scale distributed simulation. These simulation tools will help you gain insight into large-scale systems across many disciplines.




Software Architectures and Tools for Computer Aided Process Engineering


Book Description

The idea of editing a book on modern software architectures and tools for CAPE (Computer Aided Process Engineering) came about when the editors of this volume realized that existing titles relating to CAPE did not include references to the design and development of CAPE software. Scientific software is needed to solve CAPE related problems by industry/academia for research and development, for education and training and much more. There are increasing demands for CAPE software to be versatile, flexible, efficient, and reliable. This means that the role of software architecture is also gaining increasing importance. Software architecture needs to reconcile the objectives of the software; the framework defined by the CAPE methods; the computational algorithms; and the user needs and tools (other software) that help to develop the CAPE software. The object of this book is to bring to the reader, the software side of the story with respect to computer aided process engineering.