Book Description
Presents a thorough grounding in the techniques of mathematical modelling, and proceeds to explore a range of classical and continuum models from an array of disciplines.
Author : A. C. Fowler
Publisher : Cambridge University Press
Page : 440 pages
File Size : 38,29 MB
Release : 1997-11-28
Category : Mathematics
ISBN : 9780521467032
Presents a thorough grounding in the techniques of mathematical modelling, and proceeds to explore a range of classical and continuum models from an array of disciplines.
Author : Ismael Herrera
Publisher : John Wiley & Sons
Page : 259 pages
File Size : 28,21 MB
Release : 2012-03-19
Category : Technology & Engineering
ISBN : 1118207203
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
Author : Hemen Dutta
Publisher : Springer Nature
Page : 325 pages
File Size : 30,60 MB
Release : 2020-02-29
Category : Mathematics
ISBN : 9811522863
This book discusses significant research findings in the field of mathematical modelling, with particular emphasis on important applied-sciences, health, and social issues. It includes topics such as model on viral immunology, stochastic models for the dynamics of influenza, model describing the transmission of dengue, model for human papillomavirus (HPV) infection, prostate cancer model, realization of economic growth by goal programming, modelling of grazing periodic solutions in discontinuous systems, modelling of predation system, fractional epidemiological model for computer viruses, and nonlinear ecological models. A unique addition in the proposed areas of research and education, this book is a valuable resource for graduate students, researchers and educators associated with the study of mathematical modelling of health, social and applied-sciences issues. Readers interested in applied mathematics should also find this book valuable.
Author : Max Kuhn
Publisher : Springer Science & Business Media
Page : 595 pages
File Size : 44,92 MB
Release : 2013-05-17
Category : Medical
ISBN : 1461468493
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Author : Douglas R. Shier
Publisher : CRC Press
Page : 472 pages
File Size : 43,84 MB
Release : 1999-11-11
Category : Mathematics
ISBN : 9781420050042
The practice of modeling is best learned by those armed with fundamental methodologies and exposed to a wide variety of modeling experience. Ideally, this experience could be obtained by working on actual modeling problems. But time constraints often make this difficult. Applied Mathematical Modeling provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in practice. These chapters discuss the general components of the modeling process, and the evolutionary nature of successful model building. The second part provides a rich compendium of case studies, each one complete with examples, exercises, and projects. In keeping with the multidimensional nature of the models presented, the chapters in the second part are listed in alphabetical order by the contributor's last name. Unlike most mathematical books, in which you must master the concepts of early chapters to prepare for subsequent material, you may start with any chapter. Begin with cryptology, if that catches your fancy, or go directly to bursty traffic if that is your cup of tea. Applied Mathematical Modeling serves as a handbook of in-depth case studies that span the mathematical sciences, building upon a modest mathematical background. Readers in other applied disciplines will benefit from seeing how selected mathematical modeling philosophies and techniques can be brought to bear on problems in their disciplines. The models address actual situations studied in chemistry, physics, demography, economics, civil engineering, environmental engineering, industrial engineering, telecommunications, and other areas.
Author : Thomas Szirtes
Publisher : Butterworth-Heinemann
Page : 853 pages
File Size : 40,1 MB
Release : 2007-04-27
Category : Technology & Engineering
ISBN : 0080555454
Applied Dimensional Analysis and Modeling provides the full mathematical background and step-by-step procedures for employing dimensional analyses, along with a wide range of applications to problems in engineering and applied science, such as fluid dynamics, heat flow, electromagnetics, astronomy and economics. This new edition offers additional worked-out examples in mechanics, physics, geometry, hydrodynamics, and biometry. Covers 4 essential aspects and applications: principal characteristics of dimensional systems, applications of dimensional techniques in engineering, mathematics and geometry, applications in biosciences, biometry and economics, applications in astronomy and physics Offers more than 250 worked-out examples and problems with solutions Provides detailed descriptions of techniques of both dimensional analysis and dimensional modeling
Author : Scott A. Pardo
Publisher : Springer
Page : 255 pages
File Size : 18,61 MB
Release : 2016-07-19
Category : Mathematics
ISBN : 3319327682
This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creating predictive or classification models - predicting nature or classifying individuals, and statistics is often used to prove or disprove phenomena as opposed to aiding in the design of a product or process. In industry however, Chemical Engineers use designed experiments to optimize petroleum extraction; Manufacturing Engineers use experimental data to optimize machine operation; Industrial Engineers might use data to determine the optimal number of operators required in a manual assembly process. This text teaches engineering and applied science students to incorporate empirical investigation into such design processes. Much of the discussion in this book is about models, not whether the models truly represent reality but whether they adequately represent reality with respect to the problems at hand; many ideas focus on how to gather data in the most efficient way possible to construct adequate models. Includes chapters on subjects not often seen together in a single text (e.g., measurement systems, mixture experiments, logistic regression, Taguchi methods, simulation) Techniques and concepts introduced present a wide variety of design situations familiar to engineers and applied scientists and inspire incorporation of experimentation and empirical investigation into the design process. Software is integrally linked to statistical analyses with fully worked examples in each chapter; fully worked using several packages: SAS, R, JMP, Minitab, and MS Excel - also including discussion questions at the end of each chapter. The fundamental learning objective of this textbook is for the reader to understand how experimental data can be used to make design decisions and to be familiar with the most common types of experimental designs and analysis methods.
Author : Erick C. Jones
Publisher : CRC Press
Page : 522 pages
File Size : 15,96 MB
Release : 2007-12-03
Category : Business & Economics
ISBN : 1420009362
Radio Frequency Identification (RFID) tagging is now mandated by the department of defense and many of the world's largest retailers including Wal-Mart. In order to stay competitive, more than 200,000 manufacturers and suppliers must develop strategies for integrating RFID technologies into their supply chains. RFID in Logistics: A Practical Introd
Author : T. Agami Reddy
Publisher : Springer Science & Business Media
Page : 446 pages
File Size : 19,68 MB
Release : 2011-08-09
Category : Technology & Engineering
ISBN : 1441996133
Applied Data Analysis and Modeling for Energy Engineers and Scientists fills an identified gap in engineering and science education and practice for both students and practitioners. It demonstrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probability,statistics, experimental design, regression, model building, optimization, risk analysis and decision-making to actual engineering processes and systems. The text provides a formal structure that offers a basic, broad and unified perspective,while imparting the knowledge, skills and confidence to work in data analysis and modeling. This volume uses numerous solved examples, published case studies from the author’s own research, and well-conceived problems in order to enhance comprehension levels among readers and their understanding of the “processes”along with the tools.
Author : Taylor & Francis Group
Publisher : CRC Press
Page : 308 pages
File Size : 24,52 MB
Release : 2021-09-30
Category :
ISBN : 9781032175911
This book covers tools and techniques used for developing mathematical methods and modelling related to real-life situations. It brings forward significant aspects of mathematical research by using different mathematical methods such as analytical, computational, and numerical with relevance or applications in engineering and applied sciences.