Modeling in Computational Biology and Biomedicine


Book Description

Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines. Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience.




Systems Biomedicine


Book Description

Systems biology is a critical emerging field that quantifies and annotates the complexity of biological systems in order to construct algorithmic models to predict outcomes from component input. Applications in medicine are revolutionizing our understanding of biological processes and systems. Systems Biomedicine is organized around foundations, computational modeling, network biology, and integrative biology, with the extension of examples from human biology and pharmacology, to focus on the applications of systems approaches to medical problems. An integrative approach to the underlying genomic, proteomic, and computational biology principles provides researchers with guidance in the use of qualitative systems and hypothesis generators. To reflect the highly interdisciplinary nature of the field, careful detail has been extended to ensure explanations of complex mathematical and biological principles are clear with minimum technical jargon. - Organized to reflect the important distinguishing characteristics of systems strategies in experimental biology and medicine - Provides precise and comprehensive measurement tools for constructing a model of the system and tools for defining complexity as an experimental dependent variable - Includes a thorough discussion of the applications of quantitative principles to biomedical problems




Mathematical Modeling of Biological Systems, Volume I


Book Description

This edited volume contains a selection of chapters that are an outgrowth of the - ropean Conference on Mathematical and Theoretical Biology (ECMTB05, Dresden, Germany, July 2005). The peer-reviewed contributions show that mathematical and computational approaches are absolutely essential for solving central problems in the life sciences, ranging from the organizational level of individual cells to the dynamics of whole populations. The contributions indicate that theoretical and mathematical biology is a diverse and interdisciplinary ?eld, ranging from experimental research linked to mathema- cal modeling to the development of more abstract mathematical frameworks in which observations about the real world can be interpreted, and with which new hypotheses for testing can be generated. Today, much attention is also paid to the development of ef?cient algorithms for complex computation and visualisation, notably in molecular biology and genetics. The ?eld of theoretical and mathematical biology and medicine has profound connections to many current problems of great relevance to society. The medical, industrial, and social interests in its development are in fact indisputable.




Single-Cell-Based Models in Biology and Medicine


Book Description

Aimed at postgraduate students in a variety of biology-related disciplines, this volume presents a collection of mathematical and computational single-cell-based models and their application. The main sections cover four general model groupings: hybrid cellular automata, cellular potts, lattice-free cells, and viscoelastic cells. Each section is introduced by a discussion of the applicability of the particular modelling approach and its advantages and disadvantages, which will make the book suitable for students starting research in mathematical biology as well as scientists modelling multicellular processes.




Probabilistic Modeling in Bioinformatics and Medical Informatics


Book Description

Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.




Sourcebook of Models for Biomedical Research


Book Description

The collection of systems represented in Sourcebook of genomic programs, although this work is certainly well Models for Biomedical Research is an effort to re?ect the represented and indexed. diversity and utility of models that are used in biomedicine. Some models have been omitted due to page limitations That utility is based on the consideration that observations and we have encouraged the authors to use tables and made in particular organisms will provide insight into the ? gures to make comparisons of models so that observations workings of other, more complex, systems. Even the cell not available in primary publications can become useful to cycle in the simple yeast cell has similarities to that in the reader. humans and regulation with similar proteins occurs. We thank Richard Lansing and the staff at Humana for Some models have the advantage that the reproductive, guidance through the publication process. mitotic, development or aging cycles are rapid compared As this book was entering production, we learned of the with those in humans; others are utilized because individual loss of Tom Lanigan, Sr. Tom was a leader and innovator proteins may be studied in an advantageous way and that in scienti?c publishing and a good friend and colleague to have human homologs. Other organisms are facile to grow all in the exploratory enterprise. We dedicate this book to in laboratory settings or lend themselves to convenient analy- his memory. We will miss him greatly.




Deterministic Versus Stochastic Modelling in Biochemistry and Systems Biology


Book Description

Stochastic kinetic methods are currently considered to be the most realistic and elegant means of representing and simulating the dynamics of biochemical and biological networks. Deterministic versus stochastic modelling in biochemistry and systems biology introduces and critically reviews the deterministic and stochastic foundations of biochemical kinetics, covering applied stochastic process theory for application in the field of modelling and simulation of biological processes at the molecular scale. Following an overview of deterministic chemical kinetics and the stochastic approach to biochemical kinetics, the book goes onto discuss the specifics of stochastic simulation algorithms, modelling in systems biology and the structure of biochemical models. Later chapters cover reaction-diffusion systems, and provide an analysis of the Kinfer and BlenX software systems. The final chapter looks at simulation of ecodynamics and food web dynamics. Introduces mathematical concepts and formalisms of deterministic and stochastic modelling through clear and simple examples Presents recently developed discrete stochastic formalisms for modelling biological systems and processes Describes and applies stochastic simulation algorithms to implement a stochastic formulation of biochemical and biological kinetics




Modelling in Medicine and Biology VIII


Book Description

Featuring contributions from the eighth International Conference on Modelling in Medicine and Biology, this volume covers a broad spectrum of topics including the application of computers to simulate biomedical phenomena. It will be of interest to medical and physical scientists and engineers.







Biomedical Models and Resources


Book Description

Printbegrænsninger: Der kan printes 10 sider ad gangen og max. 40 sider pr. session.