Modeling MEMS and NEMS


Book Description

Designing small structures necessitates an a priori understanding of various device behaviors. The way to gain such understanding is to construct, analyze, and interpret the proper mathematical model. Through such models, Modeling MEMS and NEMS illuminates microscale and nanoscale phenomena, thereby facilitating the design and optimization of micro- and nanoscale devices. After some introductory material, a review of continuum mechanics, and a study of scaling, the book is organized around phenomena. Each chapter addresses a sequence of real devices that share a common feature. The authors abstract that feature from the devices and present the mathematical tools needed to model it. They construct, analyze, and interpret a series of models of increasing complexity, then at the end of the chapter, they return to one of the devices described, apply the model to it, and interpret the analysis. In the beginning, the world of microdevices was dominated by experimental work and the development of fabrication techniques. As it matures, optimization and innovative designs are moving to the forefront. Modeling MEMS and NEMS not only provides the practical background and tools needed to design and optimize microdevices but it also helps develop the intuitive understanding that can lead to developing new and better designs and devices.




Modeling MEMS and NEMS


Book Description

Designing small structures necessitates an a priori understanding of various device behaviors. The way to gain such understanding is to construct, analyze, and interpret the proper mathematical model. Through such models, Modeling MEMS and NEMS illuminates microscale and nanoscale phenomena, thereby facilitating the design and optimization o




MEMS and NEMS


Book Description

The development of micro- and nano-mechanical systems (MEMS and NEMS) foreshadows momentous changes not only in the technological world, but in virtually every aspect of human life. The future of the field is bright with opportunities, but also riddled with challenges, ranging from further theoretical development through advances in fabrication technologies, to developing high-performance nano- and microscale systems, devices, and structures, including transducers, switches, logic gates, actuators and sensors. MEMS and NEMS: Systems, Devices, and Structures is designed to help you meet those challenges and solve fundamental, experimental, and applied problems. Written from a multi-disciplinary perspective, this book forms the basis for the synthesis, modeling, analysis, simulation, control, prototyping, and fabrication of MEMS and NEMS. The author brings together the various paradigms, methods, and technologies associated with MEMS and NEMS to show how to synthesize, analyze, design, and fabricate them. Focusing on the basics, he illustrates the development of NEMS and MEMS architectures, physical representations, structural synthesis, and optimization. The applications of MEMS and NEMS in areas such as biotechnology, medicine, avionics, transportation, and defense are virtually limitless. This book helps prepare you to take advantage of their inherent opportunities and effectively solve problems related to their configurations, systems integration, and control.




Mems/Nems


Book Description

This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.




MEMS: Field Models and Optimal Design


Book Description

This book highlights numerical models as powerful tools for the optimal design of Micro-Electro-Mechanical Systems (MEMS). Most MEMS experts have a background in electronics, where circuit models or behavioral models (i.e. lumped-parameter models) of devices are preferred to field models. This is certainly convenient in terms of preliminary design, e.g. in the prototyping stage. However, design optimization should also take into account fine-sizing effects on device behavior and therefore be based on distributed-parameter models, such as finite-element models. The book shows how the combination of automated optimal design and field-based models can produce powerful design toolboxes for MEMS. It especially focuses on illustrating theoretical concepts with practical examples, fostering comprehension through a problem-solving approach. By comparing the results obtained using different methods, readers will learn to identify their respective strengths and weaknesses. In addition, special emphasis is given to evolutionary computing and nature-inspired optimization strategies, the effectiveness of which has already been amply demonstrated. Given its scope, the book provides PhD students, researchers and professionals in the area of computer-aided analysis with a comprehensive, yet concise and practice-oriented guide to MEMS design and optimization. To benefit most from the book, readers should have a basic grasp of electromagnetism, vector analysis and numerical methods.




Advances in Multiphysics Simulation and Experimental Testing of Mems


Book Description

This volume takes a much needed multiphysical approach to the numerical and experimental evaluation of the mechanical properties of MEMS and NEMS. The contributed chapters present many of the most recent developments in fields ranging from microfluids and damping to structural analysis, topology optimization and nanoscale simulations. The book responds to a growing need emerging in academia and industry to merge different areas of expertise towards a unified design and analysis of MEMS and NEMS.




Nano Scale Based Model Development for MEMS to NEMS Migration


Book Description

ABSTRACT: A novel integrated modeling methodology for NEMS is presented. Nano scale device models include typical effects found, at this scale, in various domains. The methodology facilitates the insertion of quantum corrections to nanoscale device models when they are simulated within multi-domain environments, as is performed in the MEMS industry. This methodology includes domain-oriented approximations from ab-initio modeling. In addition, the methodology includes the selection of quantum mechanical compact models that can be integrated with basic electronic circuits or non-electronic lumped element models. Nanoelectronic device modeling integration in mixed signal systems is reported. The modeling results are compatible with standard hardware description language entities and building blocks. This methodology is based on the IEEE VHDL-AMS, which is an industry standard modeling and simulation hardware description language. The methodology must be object oriented in order to be shared with current and future nanotechnology modeling resources, which are available worldwide. In order to integrate them inside a Learning Management System (LMS), models were formulated and adapted for educational purposes. The electronic nanodevice models were translated to a standardized format for learning objects by following the Shareable Content Object Reference Model (SCORM). The SCORM format not only allows models reusability inside the framework of the LMS, but their applicability to various educational levels as well. The model of a molecular transistor was properly defined, integrated and translated using SCORM rules and reused for educational purposes at various levels. A very popular LMS platform was used to support these tasks. The LMS platform compatibility skills were applied to test the applicability and reusability of the generated learning objects. Model usability was successfully tested and measured within an undergraduate nanotechnology course in an electrical engineering program. The model was reused at the graduate level and adapted afterwards to a nanotechnology education program for school teachers. Following known Learning Management Systems, the developed methodology was successfully formulated and adapted for education.




MEMS: A Practical Guide of Design, Analysis, and Applications


Book Description

A new generation of MEMS books has emerged with this cohesive guide on the design and analysis of micro-electro-mechanical systems (MEMS). Leading experts contribute to its eighteen chapters that encompass a wide range of innovative and varied applications. This publication goes beyond fabrication techniques covered by earlier books and fills a void created by a lack of industry standards. Subjects such as transducer operations and free-space microsystems are contained in its chapters. Satisfying a demand for literature on analysis and design of microsystems the book deals with a broad array of industrial applications. This will interest engineering and research scientists in industry and academia.




Smart Material Systems and MEMS


Book Description

Presenting unified coverage of the design and modeling of smart micro- and macrosystems, this book addresses fabrication issues and outlines the challenges faced by engineers working with smart sensors in a variety of applications. Part I deals with the fundamental concepts of a typical smart system and its constituent components. Preliminary fabrication and characterization concepts are introduced before design principles are discussed in detail. Part III presents a comprehensive account of the modeling of smart systems, smart sensors and actuators. Part IV builds upon the fundamental concepts to analyze fabrication techniques for silicon-based MEMS in more detail. Practicing engineers will benefit from the detailed assessment of applications in communications technology, aerospace, biomedical and mechanical engineering. The book provides an essential reference or textbook for graduates following a course in smart sensors, actuators and systems.




Acoustic Wave and Electromechanical Resonators


Book Description

This groundbreaking book provides you with a comprehensive understanding of FBAR (thin-film bulk acoustic wave resonator), MEMS (microelectomechanical system), and NEMS (nanoelectromechanical system) resonators. For the first time anywhere, you find extensive coverage of these devices at both the technology and application levels. This practical reference offers you guidance in design, fabrication, and characterization of FBARs, MEMS and NEBS. It discusses the integration of these devices with standard CMOS (complementary-metal-oxide-semiconductor) technologies, and their application to sensing and RF systems. Moreover, this one-stop resource looks at the main characteristics, differences, and limitations of FBAR, MEMS, and NEMS devices, helping you to choose the right approaches for your projects. Over 280 illustrations and more than 130 equations support key topics throughout the book.