Modeling Microprocessor Performance


Book Description

Modeling Microprocessor Performance focuses on the development of a design and evaluation tool, named RIPE (Rensselaer Interconnect Performance Estimator). This tool analyzes the impact on wireability, clock frequency, power dissipation, and the reliability of single chip CMOS microprocessors as a function of interconnect, device, circuit, design and architectural parameters. It can accurately predict the overall performance of existing microprocessor systems. For the three major microprocessor architectures, DEC, PowerPC and Intel, the results have shown agreement within 10% on key parameters. The models cover a broad range of issues that relate to the implementation and performance of single chip CMOS microprocessors. The book contains a detailed discussion of the various models and the underlying assumptions based on actual design practices. As such, RIPE and its models provide an insightful tool into single chip microprocessor design and its performance aspects. At the same time, it provides design and process engineers with the capability to model, evaluate, compare and optimize single chip microprocessor systems using advanced technology and design techniques at an early design stage without costly and time consuming implementation. RIPE and its models demonstrate the factors which must be considered when estimating tradeoffs in device and interconnect technology and architecture design on microprocessor performance.




Performance Modeling and Design of Computer Systems


Book Description

Written with computer scientists and engineers in mind, this book brings queueing theory decisively back to computer science.




Performance Modeling for Computer Architects


Book Description

As computers become more complex, the number and complexity of the tasks facing the computer architect have increased. Computer performance often depends in complex way on the design parameters and intuition that must be supplemented by performance studies to enhance design productivity. This book introduces computer architects to computer system performance models and shows how they are relatively simple, inexpensive to implement, and sufficiently accurate for most purposes. It discusses the development of performance models based on queuing theory and probability. The text also shows how they are used to provide quick approximate calculations to indicate basic performance tradeoffs and narrow the range of parameters to consider when determining system configurations. It illustrates how performance models can demonstrate how a memory system is to be configured, what the cache structure should be, and what incremental changes in cache size can have on the miss rate. A particularly deep knowledge of probability theory or any other mathematical field to understand the papers in this volume is not required.







Performance Analysis and Tuning on Modern CPUs


Book Description

Performance tuning is becoming more important than it has been for the last 40 years. Read this book to understand your application's performance that runs on a modern CPU and learn how you can improve it. The 170+ page guide combines the knowledge of many optimization experts from different industries.




Processor and System-on-Chip Simulation


Book Description

Simulation of computer architectures has made rapid progress recently. The primary application areas are hardware/software performance estimation and optimization as well as functional and timing verification. Recent, innovative technologies such as retargetable simulator generation, dynamic binary translation, or sampling simulation have enabled widespread use of processor and system-on-chip (SoC) simulation tools in the semiconductor and embedded system industries. Simultaneously, processor and SoC simulation is still a very active research area, e.g. what amounts to higher simulation speed, flexibility, and accuracy/speed trade-offs. This book presents and discusses the principle technologies and state-of-the-art in high-level hardware architecture simulation, both at the processor and the system-on-chip level.




High-Performance Modelling and Simulation for Big Data Applications


Book Description

This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.




Principles of High-Performance Processor Design


Book Description

This book describes how we can design and make efficient processors for high-performance computing, AI, and data science. Although there are many textbooks on the design of processors we do not have a widely accepted definition of the efficiency of a general-purpose computer architecture. Without a definition of the efficiency, it is difficult to make scientific approach to the processor design. In this book, a clear definition of efficiency is given and thus a scientific approach for processor design is made possible. In chapter 2, the history of the development of high-performance processor is overviewed, to discuss what quantity we can use to measure the efficiency of these processors. The proposed quantity is the ratio between the minimum possible energy consumption and the actual energy consumption for a given application using a given semiconductor technology. In chapter 3, whether or not this quantity can be used in practice is discussed, for many real-world applications. In chapter 4, general-purpose processors in the past and present are discussed from this viewpoint. In chapter 5, how we can actually design processors with near-optimal efficiencies is described, and in chapter 6 how we can program such processors. This book gives a new way to look at the field of the design of high-performance processors.




Performance Evaluation and Benchmarking


Book Description

Computer and microprocessor architectures are advancing at an astounding pace. However, increasing demands on performance coupled with a wide variety of specialized operating environments act to slow this pace by complicating the performance evaluation process. Carefully balancing efficiency and accuracy is key to avoid slowdowns, and such a balance can be achieved with an in-depth understanding of the available evaluation methodologies. Performance Evaluation and Benchmarking outlines a variety of evaluation methods and benchmark suites, considering their strengths, weaknesses, and when each is appropriate to use. Following a general overview of important performance analysis techniques, the book surveys contemporary benchmark suites for specific areas, such as Java, embedded systems, CPUs, and Web servers. Subsequent chapters explain how to choose appropriate averages for reporting metrics and provide a detailed treatment of statistical methods, including a summary of statistics, how to apply statistical sampling for simulation, how to apply SimPoint, and a comprehensive overview of statistical simulation. The discussion then turns to benchmark subsetting methodologies and the fundamentals of analytical modeling, including queuing models and Petri nets. Three chapters devoted to hardware performance counters conclude the book. Supplying abundant illustrations, examples, and case studies, Performance Evaluation and Benchmarking offers a firm foundation in evaluation methods along with up-to-date techniques that are necessary to develop next-generation architectures.




Domain-Specific Processors


Book Description

Ranging from low-level application and architecture optimizations to high-level modeling and exploration concerns, this authoritative reference compiles essential research on various levels of abstraction appearing in embedded systems and software design. It promotes platform-based design for improved system implementation and modeling and enhanced