Modeling Neural Circuits Made Simple with Python


Book Description

An accessible undergraduate textbook in computational neuroscience that provides an introduction to the mathematical and computational modeling of neurons and networks of neurons. Understanding the brain is a major frontier of modern science. Given the complexity of neural circuits, advancing that understanding requires mathematical and computational approaches. This accessible undergraduate textbook in computational neuroscience provides an introduction to the mathematical and computational modeling of neurons and networks of neurons. Starting with the biophysics of single neurons, Robert Rosenbaum incrementally builds to explanations of neural coding, learning, and the relationship between biological and artificial neural networks. Examples with real neural data demonstrate how computational models can be used to understand phenomena observed in neural recordings. Based on years of classroom experience, the material has been carefully streamlined to provide all the content needed to build a foundation for modeling neural circuits in a one-semester course. Proven in the classroom Example-rich, student-friendly approach Includes Python code and a mathematical appendix reviewing the requisite background in calculus, linear algebra, and probability Ideal for engineering, science, and mathematics majors and for self-study




An Introductory Course in Computational Neuroscience


Book Description

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.




Modeling and Simulation in Python


Book Description

Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Python is a thorough but easy-to-follow introduction to physical modeling—that is, the art of describing and simulating real-world systems. Readers are guided through modeling things like world population growth, infectious disease, bungee jumping, baseball flight trajectories, celestial mechanics, and more while simultaneously developing a strong understanding of fundamental programming concepts like loops, vectors, and functions. Clear and concise, with a focus on learning by doing, the author spares the reader abstract, theoretical complexities and gets right to hands-on examples that show how to produce useful models and simulations.




Neuronal Dynamics


Book Description

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.




Memristor and Memristive Neural Networks


Book Description

This book covers a range of models, circuits and systems built with memristor devices and networks in applications to neural networks. It is divided into three parts: (1) Devices, (2) Models and (3) Applications. The resistive switching property is an important aspect of the memristors, and there are several designs of this discussed in this book, such as in metal oxide/organic semiconductor nonvolatile memories, nanoscale switching and degradation of resistive random access memory and graphene oxide-based memristor. The modelling of the memristors is required to ensure that the devices can be put to use and improve emerging application. In this book, various memristor models are discussed, from a mathematical framework to implementations in SPICE and verilog, that will be useful for the practitioners and researchers to get a grounding on the topic. The applications of the memristor models in various neuromorphic networks are discussed covering various neural network models, implementations in A/D converter and hierarchical temporal memories.




Python in Neuroscience


Book Description

Python is rapidly becoming the de facto standard language for systems integration. Python has a large user and developer-base external to theneuroscience community, and a vast module library that facilitates rapid and maintainable development of complex and intricate systems. In this Research Topic, we highlight recent efforts to develop Python modules for the domain of neuroscience software and neuroinformatics: - simulators and simulator interfaces - data collection and analysis - sharing, re-use, storage and databasing of models and data - stimulus generation - parameter search and optimization - visualization - VLSI hardware interfacing. Moreover, we seek to provide a representative overview of existing mature Python modules for neuroscience and neuroinformatics, to demonstrate a critical mass and show that Python is an appropriate choice of interpreter interface for future neuroscience software development.




Readings in Molecular Biology


Book Description

A collection of topical essays on noteworthy discoveries in the biological sciences published in the journal Nature.




The Cortex and the Critical Point


Book Description

How the cerebral cortex operates near a critical phase transition point for optimum performance. Individual neurons have limited computational powers, but when they work together, it is almost like magic. Firing synchronously and then breaking off to improvise by themselves, they can be paradoxically both independent and interdependent. This happens near the critical point: when neurons are poised between a phase where activity is damped and a phase where it is amplified, where information processing is optimized, and complex emergent activity patterns arise. The claim that neurons in the cortex work best when they operate near the critical point is known as the criticality hypothesis. In this book John Beggs—one of the pioneers of this hypothesis—offers an introduction to the critical point and its relevance to the brain. Drawing on recent experimental evidence, Beggs first explains the main ideas underlying the criticality hypotheses and emergent phenomena. He then discusses the critical point and its two main consequences—first, scale-free properties that confer optimum information processing; and second, universality, or the idea that complex emergent phenomena, like that seen near the critical point, can be explained by relatively simple models that are applicable across species and scale. Finally, Beggs considers future directions for the field, including research on homeostatic regulation, quasicriticality, and the expansion of the cortex and intelligence. An appendix provides technical material; many chapters include exercises that use freely available code and data sets.




Protocells


Book Description

The first comprehensive general resource on state-of-the-art protocell research, describing current approaches to making new forms of life from scratch in the laboratory. Protocells offers a comprehensive resource on current attempts to create simple forms of life from scratch in the laboratory. These minimal versions of cells, known as protocells, are entities with lifelike properties created from nonliving materials, and the book provides in-depth investigations of processes at the interface between nonliving and living matter. Chapters by experts in the field put this state-of-the-art research in the context of theory, laboratory work, and computer simulations on the components and properties of protocells. The book also provides perspectives on research in related areas and such broader societal issues as commercial applications and ethical considerations. The book covers all major scientific approaches to creating minimal life, both in the laboratory and in simulation. It emphasizes the bottom-up view of physicists, chemists, and material scientists but also includes the molecular biologists' top-down approach and the origin-of-life perspective. The capacity to engineer living technology could have an enormous socioeconomic impact and could bring both good and ill. Protocells promises to be the essential reference for research on bottom-up assembly of life and living technology for years to come. It is written to be both resource and inspiration for scientists working in this exciting and important field and a definitive text for the interested layman.




Gene Regulation and Metabolism


Book Description

An overview of current computational approaches to metabolism and gene regulation.