Combustor Modelling


Book Description




NASA Technical Paper


Book Description







Flowfield Modeling and Diagnostics


Book Description

First published in 2004. Routledge is an imprint of Taylor & Francis, an informa company.







Journal of Energy


Book Description




A Physics-based Emissions Model for Aircraft Gas Turbine Combustors


Book Description

In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine engines within quantified uncertainty bounds for the purpose of assessing design tradeoffs and interdependencies in a policy-making setting. The approach taken is to capture the physical relationships among operating conditions, combustor design parameters, and pollutant emissions. The model is developed using only high-level combustor design parameters and ideal reactors. The predictive capability of the model is assessed by comparing model estimates of NO, and CO emissions from five different industry combustors to certification data. The model developed in this work correctly captures the physical relationships between engine operating conditions, combustor design parameters, and NO. and CO emissions. The NO. estimates are as good as, or better than, the NO. estimates from an established empirical model; and the CO estimates are within the uncertainty in the certification data at most of the important low power operating conditions.




Flow and Combustion in Advanced Gas Turbine Combustors


Book Description

With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 “Flow and Combustion in Future Gas Turbine Combustion Chambers” funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts