Modeling Random Processes for Engineers and Managers


Book Description

Modeling Random Processes for Engineers and Managers provides students with a "gentle" introduction to stochastic processes, emphasizing full explanations and many examples rather than formal mathematical theorems and proofs. The text offers an accessible entry into a very useful and versatile set of tools for dealing with uncertainty and variation. Many practical examples of models, as well as complete explanations of the thought process required to create them, motivate the presentation of the computational methods. In addition, the text contains a previously unpublished computational approach to solving many of the equations that occur in Markov processes. Modeling Random Processes is intended to serve as an introduction, but more advanced students can use the case studies and problems to expand their understanding of practical uses of the theory.




Markov Chains and Decision Processes for Engineers and Managers


Book Description

Recognized as a powerful tool for dealing with uncertainty, Markov modeling can enhance your ability to analyze complex production and service systems. However, most books on Markov chains or decision processes are often either highly theoretical, with few examples, or highly prescriptive, with little justification for the steps of the algorithms u




An Enduring Quest


Book Description

The process of industrialization that began over two hundred years ago is continuing to change the way people work and live, and doing it very rapidly, in places like China and India. At the forefront of this movement is the profession of industrial engineering that develops and applies the technology that drives industrialization. This book describes how industrial engineering evolved over the past two centuries developing methods and principles for the planning, design, and control of production and service systems. The story focuses on the growth of the discipline at Purdue University where it helped shape the university itself and made substantial contributions to the industrialization of America and the world. The story includes colorful and creative people like Frank and Lillian Gilbreth of Cheaper by the Dozen fame. Lillian was the first lady of American engineering as well a founder of Purdue's Industrial Engineering.




Probability and Random Processes for Electrical and Computer Engineers


Book Description

The theory of probability is a powerful tool that helps electrical and computer engineers to explain, model, analyze, and design the technology they develop. The text begins at the advanced undergraduate level, assuming only a modest knowledge of probability, and progresses through more complex topics mastered at graduate level. The first five chapters cover the basics of probability and both discrete and continuous random variables. The later chapters have a more specialized coverage, including random vectors, Gaussian random vectors, random processes, Markov Chains, and convergence. Describing tools and results that are used extensively in the field, this is more than a textbook; it is also a reference for researchers working in communications, signal processing, and computer network traffic analysis. With over 300 worked examples, some 800 homework problems, and sections for exam preparation, this is an essential companion for advanced undergraduate and graduate students. Further resources for this title, including solutions (for Instructors only), are available online at www.cambridge.org/9780521864701.




State-Space Models


Book Description

State-space models as an important mathematical tool has been widely used in many different fields. This edited collection explores recent theoretical developments of the models and their applications in economics and finance. The book includes nonlinear and non-Gaussian time series models, regime-switching and hidden Markov models, continuous- or discrete-time state processes, and models of equally-spaced or irregularly-spaced (discrete or continuous) observations. The contributed chapters are divided into four parts. The first part is on Particle Filtering and Parameter Learning in Nonlinear State-Space Models. The second part focuses on the application of Linear State-Space Models in Macroeconomics and Finance. The third part deals with Hidden Markov Models, Regime Switching and Mathematical Finance and the fourth part is on Nonlinear State-Space Models for High Frequency Financial Data. The book will appeal to graduate students and researchers studying state-space modeling in economics, statistics, and mathematics, as well as to finance professionals.




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.




Random Processes for Engineers


Book Description

This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).




Probability and Random Processes for Electrical and Computer Engineers


Book Description

With updates and enhancements to the incredibly successful first edition, Probability and Random Processes for Electrical and Computer Engineers, Second Edition retains the best aspects of the original but offers an even more potent introduction to probability and random variables and processes. Written in a clear, concise style that illustrates the subject’s relevance to a wide range of areas in engineering and physical and computer sciences, this text is organized into two parts. The first focuses on the probability model, random variables and transformations, and inequalities and limit theorems. The second deals with several types of random processes and queuing theory. New or Updated for the Second Edition: A short new chapter on random vectors that adds some advanced new material and supports topics associated with discrete random processes Reorganized chapters that further clarify topics such as random processes (including Markov and Poisson) and analysis in the time and frequency domain A large collection of new MATLAB®-based problems and computer projects/assignments Each Chapter Contains at Least Two Computer Assignments Maintaining the simplified, intuitive style that proved effective the first time, this edition integrates corrections and improvements based on feedback from students and teachers. Focused on strengthening the reader’s grasp of underlying mathematical concepts, the book combines an abundance of practical applications, examples, and other tools to simplify unnecessarily difficult solutions to varying engineering problems in communications, signal processing, networks, and associated fields.




Decision Making in Systems Engineering and Management


Book Description

Decision Making in Systems Engineering and Management is a comprehensive textbook that provides a logical process and analytical techniques for fact-based decision making for the most challenging systems problems. Grounded in systems thinking and based on sound systems engineering principles, the systems decisions process (SDP) leverages multiple objective decision analysis, multiple attribute value theory, and value-focused thinking to define the problem, measure stakeholder value, design creative solutions, explore the decision trade off space in the presence of uncertainty, and structure successful solution implementation. In addition to classical systems engineering problems, this approach has been successfully applied to a wide range of challenges including personnel recruiting, retention, and management; strategic policy analysis; facilities design and management; resource allocation; information assurance; security systems design; and other settings whose structure can be conceptualized as a system.