A Bibliography on Computational Molecular Biology and Genetics


Book Description

Provides a definitive bibliographic review of the literature related to DNA mapping and sequence analysis, with a focus on computer and mathematical aspects of molecular biology and genetics. Over 2200 entries, arranged by author's name.




Modelling in Molecular Biology


Book Description

Presents new mathematical and computational models as well as statistical methods for the solution of fundamental problems in the biosciences. Describes how to find regularities among empirical data, as well as conceptual models and theories.




Fundamentals of Bioinformatics and Computational Biology


Book Description

This book offers comprehensive coverage of all the core topics of bioinformatics, and includes practical examples completed using the MATLAB bioinformatics toolboxTM. It is primarily intended as a textbook for engineering and computer science students attending advanced undergraduate and graduate courses in bioinformatics and computational biology. The book develops bioinformatics concepts from the ground up, starting with an introductory chapter on molecular biology and genetics. This chapter will enable physical science students to fully understand and appreciate the ultimate goals of applying the principles of information technology to challenges in biological data management, sequence analysis, and systems biology. The first part of the book also includes a survey of existing biological databases, tools that have become essential in today’s biotechnology research. The second part of the book covers methodologies for retrieving biological information, including fundamental algorithms for sequence comparison, scoring, and determining evolutionary distance. The main focus of the third part is on modeling biological sequences and patterns as Markov chains. It presents key principles for analyzing and searching for sequences of significant motifs and biomarkers. The last part of the book, dedicated to systems biology, covers phylogenetic analysis and evolutionary tree computations, as well as gene expression analysis with microarrays. In brief, the book offers the ideal hands-on reference guide to the field of bioinformatics and computational biology.




DNA Computing Models


Book Description

Sir Francis Crick would undoubtedly be at the front of the line ordering this fascinating book. Being one of the discoverers of DNA, he would be amazed at how his work has been applied to mankind's most important invention, the computer. In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines. It also includes laboratory-scale human-operated models of computation, as well as a description of the first experiment of DNA computation conducted by Adleman in 1994.




Statistical Modeling and Machine Learning for Molecular Biology


Book Description

Molecular biologists are performing increasingly large and complicated experiments, but often have little background in data analysis. The book is devoted to teaching the statistical and computational techniques molecular biologists need to analyze their data. It explains the big-picture concepts in data analysis using a wide variety of real-world molecular biological examples such as eQTLs, ortholog identification, motif finding, inference of population structure, protein fold prediction and many more. The book takes a pragmatic approach, focusing on techniques that are based on elegant mathematics yet are the simplest to explain to scientists with little background in computers and statistics.




Computational Methods in Systems Biology


Book Description

This book constitutes the refereed proceedings of the International Workshop on Computational Methods in Systems Biology, CMSB 2003, held in Rovereto, Italy, in February 2003. The 11 revised full papers presented together with 2 invited papers, 7 position papers, and 11 abstracts were carefully reviewed and selected from 30 submissions. Among the topics addressed are modeling languages for systems biology, concurrency in biological systems, constraint programming, logical methods in systems biology, formal methods for the analysis of biomolecular systems, quantitative analysis of biomolecular systems, and simulation and modeling techniques for systems biology.




Computational Modeling of Genetic and Biochemical Networks


Book Description

How new modeling techniques can be used to explore functionally relevant molecular and cellular relationships.