Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems


Book Description

This monograph presents a variety of techniques that can be used for designing robust fault diagnosis schemes for non-linear systems. The introductory part of the book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. Subsequently, advanced robust observer structures are presented. Parameter estimation based techniques are discussed as well. A particular attention is drawn to experimental design for fault diagnosis. The book also presents a number of robust soft computing approaches utilizing evolutionary algorithms and neural networks. All approaches described in this book are illustrated by practical applications.




Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems


Book Description

This monograph presents a variety of techniques that can be used for designing robust fault diagnosis schemes for non-linear systems. The introductory part of the book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. Subsequently, advanced robust observer structures are presented. Parameter estimation based techniques are discussed as well. A particular attention is drawn to experimental design for fault diagnosis. The book also presents a number of robust soft computing approaches utilizing evolutionary algorithms and neural networks. All approaches described in this book are illustrated by practical applications.




Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems


Book Description

This book presents selected fault diagnosis and fault-tolerant control strategies for non-linear systems in a unified framework. In particular, starting from advanced state estimation strategies up to modern soft computing, the discrete-time description of the system is employed Part I of the book presents original research results regarding state estimation and neural networks for robust fault diagnosis. Part II is devoted to the presentation of integrated fault diagnosis and fault-tolerant systems. It starts with a general fault-tolerant control framework, which is then extended by introducing robustness with respect to various uncertainties. Finally, it is shown how to implement the proposed framework for fuzzy systems described by the well-known Takagi–Sugeno models. This research monograph is intended for researchers, engineers, and advanced postgraduate students in control and electrical engineering, computer science, as well as mechanical and chemical engineering.




Fault Detection and Diagnosis in Nonlinear Systems


Book Description

The high reliability required in industrial processes has created the necessity of detecting abnormal conditions, called faults, while processes are operating. The term fault generically refers to any type of process degradation, or degradation in equipment performance because of changes in the process's physical characteristics, process inputs or environmental conditions. This book is about the fundamentals of fault detection and diagnosis in a variety of nonlinear systems which are represented by ordinary differential equations. The fault detection problem is approached from a differential algebraic viewpoint, using residual generators based upon high-gain nonlinear auxiliary systems (‘observers’). A prominent role is played by the type of mathematical tools that will be used, requiring knowledge of differential algebra and differential equations. Specific theorems tailored to the needs of the problem-solving procedures are developed and proved. Applications to real-world problems, both with constant and time-varying faults, are made throughout the book and include electromechanical positioning systems, the Continuous Stirred Tank Reactor (CSTR), bioreactor models and belt drive systems, to name but a few.




Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach


Book Description

Theincreasingcomplexityofspacevehiclessuchassatellites,andthecostreduction measures that have affected satellite operators are increasingly driving the need for more autonomy in satellite diagnostics and control systems. Current methods for detecting and correcting anomalies onboard the spacecraft as well as on the ground are primarily manual and labor intensive, and therefore, tend to be slow. Operators inspect telemetry data to determine the current satellite health. They use various statisticaltechniques andmodels,buttheanalysisandevaluation ofthelargevolume of data still require extensive human intervention and expertise that is prone to error. Furthermore, for spacecraft and most of these satellites, there can be potentially unduly long delays in round-trip communications between the ground station and the satellite. In this context, it is desirable to have onboard fault-diagnosis system that is capable of detecting, isolating, identifying or classifying faults in the system withouttheinvolvementandinterventionofoperators.Towardthisend,theprinciple goal here is to improve the ef?ciency, accuracy, and reliability of the trend analysis and diagnostics techniques through utilization of intelligent-based and hybrid-based methodologies.




Fault Diagnosis in Nonlinear Systems Using Learning and Sliding Mode Approaches with Applications for Satellite Control Systems


Book Description

In this thesis, model based fault detection, isolation, and estimation problem in several classes of nonlinear systems is studied using sliding mode and learning approaches. First, a fault diagnosis scheme using a bank of repetitive learning observers is presented. The diagnostic observers are established in a generalized observer scheme, and the observer inputs are repetitively updated using the output estimation error in a proportional-integral structure. Next, a framework for robust fault diagnosis using sliding mode and learning approaches is proposed to deal with various types of faults in a class of nonlinear systems with triangular input form. In the designed diagnostic observers, first order and second order sliding modes are used respectively, to achieve robust state estimation in the presence of uncertainties, and additional online estimators are established to characterize the faults. In order to guarantee that the sliding mode is able to distinguish the system uncertainties from the faults, two iterative adaptive laws are used to update the sliding mode switching gains. Moreover, different online fault estimators are developed using neural state space models, iterative learning algorithms, and wavelet networks. Another class of nonlinear systems where an unmeasurable part of state can be described as a nonlinear function of the output and its derivatives is considered next. Accordingly, a class of fault diagnosis schemes using high order sliding mode differentiators (HOSMDs) and online estimators are proposed, where neural adaptive estimators and iterative neuron PID estimators are designed. Additionally, a fault diagnosis scheme using HOSMDs and neural networks based uncertainty observers is designed in order to achieve a better performance in robust fault detection. If the uncertainties can be accurately estimated, the generated diagnostic residual is more sensitive to the onset of faults. Finally, a fault diagnosis scheme using Takagi-Sugeno (TS) fuzzy models, neural networks, and sliding mode is developed. The availability of TS fuzzy models makes this fault diagnosis scheme applicable to a wider class of nonlinear systems. The proposed fault diagnosis schemes are applied to several types of satellite control systems, and the simulation results demonstrate their performance.




Fault Diagnosis of Dynamic Systems


Book Description

Fault Diagnosis of Dynamic Systems provides readers with a glimpse into the fundamental issues and techniques of fault diagnosis used by Automatic Control (FDI) and Artificial Intelligence (DX) research communities. The book reviews the standard techniques and approaches widely used in both communities. It also contains benchmark examples and case studies that demonstrate how the same problem can be solved using the presented approaches. The book also introduces advanced fault diagnosis approaches that are currently still being researched, including methods for non-linear, hybrid, discrete-event and software/business systems, as well as, an introduction to prognosis. Fault Diagnosis of Dynamic Systems is valuable source of information for researchers and engineers starting to work on fault diagnosis and willing to have a reference guide on the main concepts and standard approaches on fault diagnosis. Readers with experience on one of the two main communities will also find it useful to learn the fundamental concepts of the other community and the synergies between them. The book is also open to researchers or academics who are already familiar with the standard approaches, since they will find a collection of advanced approaches with more specific and advanced topics or with application to different domains. Finally, engineers and researchers looking for transferable fault diagnosis methods will also find useful insights in the book.




Fault Diagnosis


Book Description

This comprehensive work presents the status and likely development of fault diagnosis, an emerging discipline of modern control engineering. It covers fundamentals of model-based fault diagnosis in a wide context, providing a good introduction to the theoretical foundation and many basic approaches of fault detection.




Issues of Fault Diagnosis for Dynamic Systems


Book Description

Since the time our first book Fault Diagnosis in Dynamic Systems: The ory and Applications was published in 1989 by Prentice Hall, there has been a surge in interest in research and applications into reliable methods for diag nosing faults in complex systems. The first book sold more than 1,200 copies and has become the main text in fault diagnosis for dynamic systems. This book will follow on this excellent record by focusing on some of the advances in this subject, by introducing new concepts in research and new application topics. The work cannot provide an exhaustive discussion of all the recent research in fault diagnosis for dynamic systems, but nevertheless serves to sample some of the major issues. It has been valuable once again to have the co-operation of experts throughout the world working in industry, gov emment establishments and academic institutions in writing the individual chapters. Sometimes dynamical systems have associated numerical models available in state space or in frequency domain format. When model infor mation is available, the quantitative model-based approach to fault diagnosis can be taken, using the mathematical model to generate analytically redun dant alternatives to the measured signals. When this approach is used, it becomes important to try to understand the limitations of the mathematical models i. e. , the extent to which model parameter variations occur and the effect of changing the systems point of operation.




Diagnosis and Fault-tolerant Control Volume 2


Book Description

This book presents recent advances in fault diagnosis and fault-tolerant control of dynamic processes. Its impetus derives from the need for an overview of the challenges of the fault diagnosis technique and sustainable control, especially for those demanding systems that require reliability, availability, maintainability, and safety to ensure efficient operations. Moreover, the need for a high degree of tolerance with respect to possible faults represents a further key point, primarily for complex systems, as modeling and control are inherently challenging, and maintenance is both expensive and safety-critical. Diagnosis and Fault-tolerant Control 2 also presents and compares different fault diagnosis and fault-tolerant schemes, using well established, innovative strategies for modeling the behavior of the dynamic process under investigation. An updated treatise of diagnosis and fault-tolerant control is addressed with the use of essential and advanced methods including signal-based, model-based and data-driven techniques. Another key feature is the application of these methods for dealing with robustness and reliability.