Modelling and Forecasting Financial Data


Book Description

Over the last decade, dynamical systems theory and related nonlinear methods have had a major impact on the analysis of time series data from complex systems. Recent developments in mathematical methods of state-space reconstruction, time-delay embedding, and surrogate data analysis, coupled with readily accessible and powerful computational facilities used in gathering and processing massive quantities of high-frequency data, have provided theorists and practitioners unparalleled opportunities for exploratory data analysis, modelling, forecasting, and control. Until now, research exploring the application of nonlinear dynamics and associated algorithms to the study of economies and markets as complex systems is sparse and fragmentary at best. Modelling and Forecasting Financial Data brings together a coherent and accessible set of chapters on recent research results on this topic. To make such methods readily useful in practice, the contributors to this volume have agreed to make available to readers upon request all computer programs used to implement the methods discussed in their respective chapters. Modelling and Forecasting Financial Data is a valuable resource for researchers and graduate students studying complex systems in finance, biology, and physics, as well as those applying such methods to nonlinear time series analysis and signal processing.




Financial Forecasting, Analysis, and Modelling


Book Description

Risk analysis has become critical to modern financial planning Financial Forecasting, Analysis and Modelling provides a complete framework of long-term financial forecasts in a practical and accessible way, helping finance professionals include uncertainty in their planning and budgeting process. With thorough coverage of financial statement simulation models and clear, concise implementation instruction, this book guides readers step-by-step through the entire projection plan development process. Readers learn the tools, techniques, and special considerations that increase accuracy and smooth the workflow, and develop a more robust analysis process that improves financial strategy. The companion website provides a complete operational model that can be customised to develop financial projections or a range of other key financial measures, giving readers an immediately-applicable tool to facilitate effective decision-making. In the aftermath of the recent financial crisis, the need for experienced financial modelling professionals has steadily increased as organisations rush to adjust to economic volatility and uncertainty. This book provides the deeper level of understanding needed to develop stronger financial planning, with techniques tailored to real-life situations. Develop long-term projection plans using Excel Use appropriate models to develop a more proactive strategy Apply risk and uncertainty projections more accurately Master the Excel Scenario Manager, Sensitivity Analysis, Monte Carlo Simulation, and more Risk plays a larger role in financial planning than ever before, and possible outcomes must be measured before decisions are made. Uncertainty has become a critical component in financial planning, and accuracy demands it be used appropriately. With special focus on uncertainty in modelling and planning, Financial Forecasting, Analysis and Modelling is a comprehensive guide to the mechanics of modern finance.




Introduction to Financial Forecasting in Investment Analysis


Book Description

Forecasting—the art and science of predicting future outcomes—has become a crucial skill in business and economic analysis. This volume introduces the reader to the tools, methods, and techniques of forecasting, specifically as they apply to financial and investing decisions. With an emphasis on "earnings per share" (eps), the author presents a data-oriented text on financial forecasting, understanding financial data, assessing firm financial strategies (such as share buybacks and R&D spending), creating efficient portfolios, and hedging stock portfolios with financial futures. The opening chapters explain how to understand economic fluctuations and how the stock market leads the general economic trend; introduce the concept of portfolio construction and how movements in the economy influence stock price movements; and introduce the reader to the forecasting process, including exponential smoothing and time series model estimations. Subsequent chapters examine the composite index of leading economic indicators (LEI); review financial statement analysis and mean-variance efficient portfolios; and assess the effectiveness of analysts’ earnings forecasts. Using data from such firms as Intel, General Electric, and Hitachi, Guerard demonstrates how forecasting tools can be applied to understand the business cycle, evaluate market risk, and demonstrate the impact of global stock selection modeling and portfolio construction.




Handbook of Financial Analysis, Forecasting & Modeling


Book Description

Ready-to-use forecasting and modeling tools to read the future under any given set of assumptions. Manipulate variables such as revenues, expenses, cash flow and earnings while improving the quality of decision-making and reduces risk of error.




Modelling and Forecasting Financial Data


Book Description

Modelling and Forecasting Financial Data brings together a coherent and accessible set of chapters on recent research results on this topic. To make such methods readily useful in practice, the contributors to this volume have agreed to make available to readers upon request all computer programs used to implement the methods discussed in their respective chapters. Modelling and Forecasting Financial Data is a valuable resource for researchers and graduate students studying complex systems in finance, biology, and physics, as well as those applying such methods to nonlinear time series analysis and signal processing.




Modelling Financial Time Series


Book Description

This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.




Forecasting Volatility in the Financial Markets


Book Description

Forecasting Volatility in the Financial Markets, Third Edition assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting-edge modelling and forecasting techniques. It provides a survey of ways to measure risk and define the different models of volatility and return. Editors John Knight and Stephen Satchell have brought together an impressive array of contributors who present research from their area of specialization related to volatility forecasting. Readers with an understanding of volatility measures and risk management strategies will benefit from this collection of up-to-date chapters on the latest techniques in forecasting volatility. Chapters new to this third edition:* What good is a volatility model? Engle and Patton* Applications for portfolio variety Dan diBartolomeo* A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices Rob Cornish* Volatility modeling and forecasting in finance Xiao and Aydemir* An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility Thomas A. Silvey - Leading thinkers present newest research on volatility forecasting - International authors cover a broad array of subjects related to volatility forecasting - Assumes basic knowledge of volatility, financial mathematics, and modelling




Real Estate Modelling and Forecasting


Book Description

As real estate forms a significant part of the asset portfolios of most investors and lenders, it is crucial that analysts and institutions employ sound techniques for modelling and forecasting the performance of real estate assets. Assuming no prior knowledge of econometrics, this book introduces and explains a broad range of quantitative techniques that are relevant for the analysis of real estate data. It includes numerous detailed examples, giving readers the confidence they need to estimate and interpret their own models. Throughout, the book emphasises how various statistical techniques may be used for forecasting and shows how forecasts can be evaluated. Written by a highly experienced teacher of econometrics and a senior real estate professional, both of whom are widely known for their research, Real Estate Modelling and Forecasting is the first book to provide a practical introduction to the econometric analysis of real estate for students and practitioners.




Nonlinear Financial Econometrics: Forecasting Models, Computational and Bayesian Models


Book Description

This book investigates several competing forecasting models for interest rates, financial returns, and realized volatility, addresses the usefulness of nonlinear models for hedging purposes, and proposes new computational techniques to estimate financial processes.




Financial Modelling in Power BI


Book Description

Just like a shovel, this book is genuinely ground-breaking. It hits you over the head with the proverbial gardening tool, implementing the way forward for financial modelling. Many working in banking and finance create their financial models in Excel and then import them into Power BI for graphical interpretation and further analysis. Not on our watch. We're going to jettison the universal spreadsheet and build the entire model in Power BI.We can't stress how far off the range we're taking the horses. If you are reading this, you are a true pioneer. Some have managed to build the odd financial statement in Power BI, but all three? This is where you can gain a major advantage in the workplace. If you build the calculations for financial statements in Power BI, you can produce statements by product, by customer, by geography... Get the picture? The limitation will be restricted to the granularity of the underlying data and your imagination.This book unearths some of the tricks, measures, logic and tools needed to build the model (there is no need to bury your mistakes). We just can't promise you a rose garden...With the usual jokes in spades, it's just a shame we couldn't get Doug (get it?) to assist.