Modelling and Managing Airport Performance


Book Description

Modelling and Managing Airport Performance provides an integrated view of state-of-the-art research on measuring and improving the performance of airport systems with consideration of both airside and landside operations. The considered facets of performance include capacity, delays, economic costs, noise, emissions and safety. Several of the contributions also examine policies for managing congestion and allocating sparse capacity, as well as for mitigating the externalities of noise, emissions, and safety/risk. Key features: Provides a global perspective with contributing authors from Europe, North and South America with backgrounds in academia, research institutions, government, and industry Contributes to the definition, interpretation, and shared understanding of airport performance measures and related concepts Considers a broad range of measures that quantify operational and environmental performance, as well as safety and risk Discusses concepts and strategies for dealing with the management of airport performance Presents state-of-the-art modelling capabilities and identifies future modelling needs Themed around 3 sections – Modelling Airport Performance, Assessing Airport Impacts, and Managing Airport Performance and Congestion Modelling and Managing Airport Performance is a valuable reference for researchers and practitioners in the global air transportation community.




Modelling and Managing Airport Performance


Book Description

"Modelling and Managing Airport Performance" comprises a broad span of research across a wide spectrum of analytical models and simulation tools for airport performance, as well as methodologies, concepts, and strategies that aim to bridge the gap between demand and capacity. The authors offer a global perspective on both landside / terminal and airside elements in an integrated way, considering diverse measures of airport performance and discussing both existing airport modelling capabilities and future modelling needs with advanced concepts and strategies that deal with the management of airport performance through the allocation of airport capacity. Themed around 3 sections: Modelling Airport Performance, Assessing Airport Impacts, and Managing Airport Performance & Congestion, Modelling and Managing Airport Performance provides an invaluable reference for researchers and practitioners in the global air transportation community.




Human Performance Modeling in Aviation


Book Description

Based on the research activities of the six-year NASA human performance modeling project, Human Performance Modeling in Aviation provides an in-depth look at cognitive modeling of human operators for aviation problems. This book presents specific solutions to aviation safety problems and explores methods for integrating human performance modeling into the aviation design process. The text compares the application of five different models to two classes of aviation problems: pilot navigation errors during airport taxi operations and approach and landing performance with synthetic vision systems. This results in a comprehensive summary of the capabilities of each model and of the field in general.




Essentials of Supersonic Commercial Aircraft Conceptual Design


Book Description

Provides comprehensive coverage of how supersonic commercial aircraft are designed This must-have guide to conceptual supersonic aircraft design provides a state-of-the art overview of the subject, along with expert analysis and discussion. It examines the challenges of high-speed flight, covers aerodynamic phenomena in supersonic flow and aerodynamic drag in cruising flight, and discusses the advantages and disadvantages of oblique wing aircraft. Essentials of Supersonic Commercial Aircraft Conceptual Design is intended for members of a team producing an initial design concept of an airliner with the capability of making supersonic cruising flights. It begins with a synopsis of the history of supersonic transport aircraft development and continues with a chapter on the challenges of high-speed flight, which discusses everything from top level requirements and cruise speed requirements to fuel efficiency and cruise altitude. It then covers weight sensitivity; aerodynamic phenomena in supersonic flow; thin wings in two-dimensional flow; flat wings in inviscid supersonic flow; aerodynamic drag in cruising flight, and aerodynamic efficiency of SCV configurations. The book finishes with a chapter that examines oblique wing aircraft. Provides supersonic aircraft designers with everything they need to know about developing current and future high speed commercial jet planes Examines the many challenges of high-speed flight Covers aerodynamic phenomena in supersonic flow and aerodynamic drag in cruising flight Discusses the advantages and disadvantages of oblique wing aircraft Essentials of Supersonic Commercial Aircraft Conceptual Design is an ideal book for researchers and practitioners in the aerospace industry, as well as for graduate students in aerospace engineering.




Design of Unmanned Aerial Systems


Book Description

Provides a comprehensive introduction to the design and analysis of unmanned aircraft systems with a systems perspective Written for students and engineers who are new to the field of unmanned aerial vehicle design, this book teaches the many UAV design techniques being used today and demonstrates how to apply aeronautical science concepts to their design. Design of Unmanned Aerial Systems covers the design of UAVs in three sections—vehicle design, autopilot design, and ground systems design—in a way that allows readers to fully comprehend the science behind the subject so that they can then demonstrate creativity in the application of these concepts on their own. It teaches students and engineers all about: UAV classifications, design groups, design requirements, mission planning, conceptual design, detail design, and design procedures. It provides them with in-depth knowledge of ground stations, power systems, propulsion systems, automatic flight control systems, guidance systems, navigation systems, and launch and recovery systems. Students will also learn about payloads, manufacturing considerations, design challenges, flight software, microcontroller, and design examples. In addition, the book places major emphasis on the automatic flight control systems and autopilots. Provides design steps and procedures for each major component Presents several fully solved, step-by-step examples at component level Includes numerous UAV figures/images to emphasize the application of the concepts Describes real stories that stress the significance of safety in UAV design Offers various UAV configurations, geometries, and weight data to demonstrate the real-world applications and examples Covers a variety of design techniques/processes such that the designer has freedom and flexibility to satisfy the design requirements in several ways Features many end-of-chapter problems for readers to practice Design of Unmanned Aerial Systems is an excellent text for courses in the design of unmanned aerial vehicles at both the upper division undergraduate and beginning graduate levels.




Design and Development of Aircraft Systems


Book Description

Provides a significant update to the definitive book on aircraft system design This book is written for anyone who wants to understand how industry develops the customer requirement for aircraft into a fully integrated, tested, and qualified product that is safe to fly and fit for purpose. The new edition of Design and Development of Aircraft Systems fully expands its already comprehensive coverage to include both conventional and unmanned systems. It also updates all chapters to bring them in line with current design practice and technologies taught in courses at Cranfield, Bristol, and Loughborough universities in the UK. Design and Development of Aircraft Systems, 3rd Edition begins with an introduction to the subject. It then introduces readers to the aircraft systems (airframe, vehicle, avionic, mission, and ground systems). Following that comes a chapter on the design and development process. Other chapters look at design drivers, systems architectures, systems integration, verification of system requirements, practical considerations, and configuration control. The book finishes with sections that discuss the potential impact of complexity on flight safety, key characteristics of aircraft systems, and more. Provides a holistic view of aircraft system design, describing the interactions among subsystems such as fuel, navigation, flight control, and more Substantially updated coverage of systems engineering, design drivers, systems architectures, systems integration, modelling of systems, practical considerations, and systems examples Incorporates essential new material on the regulatory environment for both manned and unmanned systems Discussion of trends towards complex systems, automation, integration and the potential for an impact on flight safety Design and Development of Aircraft Systems, 3rd Edition is an excellent book for aerospace engineers, researchers, and graduate students involved in the field.




Managing Airports


Book Description

Fully revised and updated to consider recent developments in the industry, the sixth edition of Managing Airports: An International Perspective provides comprehensive and cutting-edge insight into the processes behind running a successful airport. Logically structured and embellished with illustrative diagrams and tables throughout, this edition approaches management topics from a strategic and commercial perspective and provides an innovative and accessible understanding of how modern-day airports are operated. Containing a plethora of global case studies covering a range of different airports from many different parts of the world, the book maintains a balance between coverage of key principles and practice of airport management, together with thorough consideration of current and topical issues. This edition has been updated to include: • New content on the significant economic and operational impacts of the COVID-19 pandemic on the global air transport industry, technological and digital advances, the changing air transport environment, airline developments, net zero goals and evolving markets. • Updated and expanded content on sustainability development and airports’ adoption of sustainable development goals, changes in airline business models, airport digital marketing, the passenger biometric airport journey and airport diversification strategies. • New and updated international case studies to show recent issues and theory in practice. International and multidisciplinary in approach, this edition is a vital resource for students, lecturers and researchers of transport and tourism, and practitioners within the air transport industry.




Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Body and Motion


Book Description

This two-volume set LNCS 11581 and 11582 constitutes the thoroughly refereed proceedings of the 10th International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management, DHM 2019, which was held as part of the 21st HCI International Conference, HCII 2019, in Orlando, FL, USA, in July 2019. The total of 1275 papers and 209 posters included in the 35 HCII 2019 proceedings volumes were carefully reviewed and selected from 5029 submissions. DHM 2019 includes a total of 77 papers; they were organized in topical sections named: Part I, Human Body and Motion: Anthropometry and computer aided ergonomics; motion prediction and motion capture; work modelling and industrial applications; risk assessment and safety. Part II, Healthcare Applications: Models in healthcare; quality of life technologies; health dialogues; health games and social communities.







Aircraft Flight Dynamics and Control


Book Description

Aircraft Flight Dynamics and Control addresses airplane flight dynamics and control in a largely classical manner, but with references to modern treatment throughout. Classical feedback control methods are illustrated with relevant examples, and current trends in control are presented by introductions to dynamic inversion and control allocation. This book covers the physical and mathematical fundamentals of aircraft flight dynamics as well as more advanced theory enabling a better insight into nonlinear dynamics. This leads to a useful introduction to automatic flight control and stability augmentation systems with discussion of the theory behind their design, and the limitations of the systems. The author provides a rigorous development of theory and derivations and illustrates the equations of motion in both scalar and matrix notation. Key features: Classical development and modern treatment of flight dynamics and control Detailed and rigorous exposition and examples, with illustrations Presentation of important trends in modern flight control systems Accessible introduction to control allocation based on the author's seminal work in the field Development of sensitivity analysis to determine the influential states in an airplane's response modes End of chapter problems with solutions available on an accompanying website Written by an author with experience as an engineering test pilot as well as a university professor, Aircraft Flight Dynamics and Control provides the reader with a systematic development of the insights and tools necessary for further work in related fields of flight dynamics and control. It is an ideal course textbook and is also a valuable reference for many of the necessary basic formulations of the math and science underlying flight dynamics and control.