Modeling and Simulation of Fluid Flow and Heat Transfer


Book Description

In the rapidly advancing modern world, scientific and technological understanding and innovation are reaching new heights. Computational fluid dynamics and heat transfer have emerged as powerful tools, playing a pivotal role in the analysis and design of complex engineering problems and processes. With the ability to mathematically model various engineering phenomena, these computational tools offer a deeper understanding of intricate dynamics before the physical prototype is created. Widely employed as simulation tools, computational fluid dynamics and heat transfer codes enable the virtual or digital prototype development of products and devices involving complex transport and multiphasic phenomena. They have become an indispensable element of the agile product development environment across diverse sectors of manufacturing, facilitating accelerated product development cycles. Key features of this book: Covers the analysis of advanced thermal engineering systems Explores the simulation of various fluids with slip effect Applies entropy and optimization techniques to thermal engineering systems Discusses heat and mass transfer phenomena Explores fluid flow and heat transfer in porous media Captures recent developments in analytical and computational methods used to investigate the complex mathematical models of fluid dynamics Covers the application of mathematical and computational modeling techniques to fluid flow problems in various geometries Modeling and Simulation of Fluid Flow and Heat Transfer delves into the fascinating world of fluid dynamics and heat transfer modeling, presenting an extensive exploration of these subjects. This book is a valuable resource for researchers, engineers, and students seeking to comprehend and apply numerical methods and computational tools in fluid dynamics and heat transfer problems.




Three-dimensional Numerical Simulation of Fluid Flow and Heat Transfer in Fin-and-tube Heat Exchangers at Different Flow Regimes


Book Description

This thesis aims at unifying two distinct branches of work within the Heat Transfer Technological Center (CTTC). On one side, extensive experimental work has been done during the past years by the researchers of the laboratory. This experimental work has been complemented with numerical models for the calculation of fin and tube heat exchangers thermal and fluid dynamic behavior. Such numerical models can be referred to as fast numerical tool which can be used for industrial rating and design purposes. On the other hand, the scientists working at the research center have successfully developed a general purpose multi-physics Computational Fluid Dynamics (CFD) code (TermoFluids). This high performance CFD solver has been extensively used by the co-workers of the group mainly to predict complex flows of great academic interest. The idea of bringing together this two branches, comes from the necessity of a reliable numerical platform with detailed local data of the flow and heat transfer on diverse heat exchanger applications. Being able to use local heat transfer coefficients as an input on the rating and design tool will lead to affordable and accurate prediction of industrial devices performance, by which the center can propose enhanced alternatives to its industrial partners. To accomplish these goals, several contributions have been made to the existing TermoFluids software which is in continuous evolution in order to meet the competitive requirements. The most significant problematics to adequately attack this problem are analyzed and quite interesting recommendations are given. Some of the challenging arising issues involve the generation of suitable and affordable meshes, the implementation and validation of three dimensional periodic boundary condition and coupling of different domains with important adjustments for the study of cases with different flow physics like time steps and thermal development. Turbulence is present in most of engineering flows, and refrigeration evaporator heat exchangers are not an exception. The presence of many tubes (acting like bluff bodies for the flow) arranged in different configurations and the fact that the flow is also confined by fins, create complex three dimensional flow features that have usually turbulent or transition to turbulent regime. Therefore, three dimensional turbulent forced convection in a matrix of wall-bounded pins is analyzed. Large Eddy Simulations (LES) are performed in order to assess the performance of three different subgrid-scale models, namely WALE, QR and VMS. The Reynolds numbers of the study were set to 3000, 10000 and 30000. Some of the main results included are the pressure coefficient around the cylinders, the averaged Nusselt number at the endwalls and vorticity of the flow. The final part of the thesis is devoted to study the three dimensional fluid flow and conjugated heat transfer parameters encountered in a plate fin and tube heat exchanger used for no-frost refrigeration. The numerical code and post processing tools are validated with a very similar but smaller case of a heat exchanger with two rows of tubes at low Reynolds for which experimental data is available. The next analysis presented is a typical configuration for no-frost evaporators with double fin spacing (for which very few numerical data is reported in the scientific literature). Conjugated convective heat transfer in the flow field and heat conduction in the fins are coupled and considered. The influence of some geometrical and flow regime parameters is analyzed for design purposes. In conclusion, the implementations and general contributions of the present thesis together with the previous existent multi-physics computational code, has proved to be capable to perform successful top edge three dimensional simulations of the flow features and heat transfer mechanisms observed on heat exchanger devices.




Modelling and Simulation of Turbulent Heat Transfer


Book Description

Providing invaluable information for both graduate researchers and R & D engineers in industry and consultancy, this book focuses on the modelling and simulation of fluid flow and thermal transport phenomena in turbulent convective flows. Its overall objective is to present state-of-the-art knowledge in order to predict turbulent heat transfer processes in fundamental and idealized flows as well as in engineering applications. The chapters, which are invited contributions from some of the most prominent scientists in this field, cover a wide range of topics and follow a unified outline and presentation to aid accessibility.










Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine


Book Description

Applications of mathematical heat transfer and fluid flow models in engineering and medicine Abram S. Dorfman, University of Michigan, USA Engineering and medical applications of cutting-edge heat and flow models This book presents innovative efficient methods in fluid flow and heat transfer developed and widely used over the last fifty years. The analysis is focused on mathematical models which are an essential part of any research effort as they demonstrate the validity of the results obtained. The universality of mathematics allows consideration of engineering and biological problems from one point of view using similar models. In this book, the current situation of applications of modern mathematical models is outlined in three parts. Part I offers in depth coverage of the applications of contemporary conjugate heat transfer models in various industrial and technological processes, from aerospace and nuclear reactors to drying and food processing. In Part II the theory and application of two recently developed models in fluid flow are considered: the similar conjugate model for simulation of biological systems, including flows in human organs, and applications of the latest developments in turbulence simulation by direct solution of Navier-Stokes equations, including flows around aircraft. Part III proposes fundamentals of laminar and turbulent flows and applied mathematics methods. The discussion is complimented by 365 examples selected from a list of 448 cited papers, 239 exercises and 136 commentaries. Key features: Peristaltic flows in normal and pathologic human organs. Modeling flows around aircraft at high Reynolds numbers. Special mathematical exercises allow the reader to complete expressions derivation following directions from the text. Procedure for preliminary choice between conjugate and common simple methods for particular problem solutions. Criterions of conjugation, definition of semi-conjugate solutions. This book is an ideal reference for graduate and post-graduate students and engineers.




Numerical Simulations of Heat Transfer and Fluid Flow on a Personal Computer


Book Description

This book describes methodologies for performing numerical simulations of transport processes in heat transfer and fluid flow. The reader is guided to make the proper selection of simulation techniques and to interpret the acquired results based on the flow physics involved. Computer programs which are used to solve heat transfer and fluid flow problems are integrated into the text. Illustrative examples of thermo-fluid phenomena are provided in every chapter to enhance understanding of the subjects by offering the reader hands-on experience of numerical simulations. Most of the fundamental transport processes in heat transfer and fluid flow, e.g. heat conduction in a solid body, convection heat transfer of a fin, laminar and turbulent heat transfer and flow in a duct or tube, and boundary layers over a flat plate are covered. A strong emphasis is placed on examinations of the thermo-fluid phenomena inside a flow passage (such as tube and a channel). The book contains detailed discussions on the formulation of the boundary conditions which is often the key issue in making successful numerical simulations of the physical phenomena of interest. Simulations are carefully designed so that conventional 16-bit personal computers, such as IBM PC® or Apple Macintosh® can be used. Visualizing the simulated results in graphic form (plotting charts and line contours of physical variables) significantly enhances the reader's understanding of the important transport processes. The book is intended as an introductory text for numerical simulations of heat transfer and fluid flow phenomena. Description is simple and self-contained so that beginners can easily understand the material, yet it will also serve as a useful reference work for the practitioner. Exercise problems are supplied by which the reader can consolidate knowledge of simulation techniques described and gain further insight in the physical processes of interest. The book contains two 31⁄2 inch floppy disks, each of which stores a complete set of simulation source codes discussed in the text. These programs are recorded in ASCII format and can be run either on IBM PC® or Macintosh® using QuickBasic®. The programs are well-documented within the text as well as in the codes themselves with a number of comment statements. This helps the reader understand the flow of program runs and, if the reader so wishes, modifying the original source codes. To facilitate prescription of the physical conditions for simulations, these programs run in a highly interactive mode. In addition, the diskettes contain a number of compiled programs which can be executed without the QuickBasic® program.