Multibody Systems Approach to Vehicle Dynamics


Book Description

Comprehensive, up-to-date and firmly rooted in practical experience, a key publication for all automotive engineers, dynamicists and students.




Contact Force Models for Multibody Dynamics


Book Description

This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehensive resource for the multibody dynamics community and beyond on modeling contact forces and the dynamics of mechanical systems undergoing contact-impact events.




Kinematic and Dynamic Simulation of Multibody Systems


Book Description

Mechanical engineering, an engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solu tions, among others. The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for informa tion in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that will cover a broad range of concentrations important to mechanical engineering graduate edu cation and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the front page of the volume. The areas of concentration are applied mechanics, biomechanics, computa tional mechanics, dynamic systems and control, energetics, mechanics of material, processing, thermal science, and tribology. Professor Leckie, the consulting editor for applied mechanics, and I are pleased to present this volume of the series: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge by Professors Garcia de Jal6n and Bayo. The selection of this volume underscores again the interest of the Mechanical Engineering Series to provide our readers with topical monographs as well as graduate texts. Austin Texas Frederick F. Ling v The first author dedicates this book to the memory of Prof F. Tegerizo (t 1988), who introduced him to kinematics.




Dynamic Simulations of Multibody Systems


Book Description

This book introduces the techniques needed to produce realistic simulations and animations of particle and rigid body systems. It focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic simulation engines that can be used to generate convincing animations of physical events involving particles and rigid bodies. It can also be used to produce accurate simulations of mechanical systems, such as a robotic parts feeder. The book is intended for researchers in computer graphics, computer animation, computer-aided mechanical design and modeling software developers.




Designing Exoskeletons


Book Description

Designing Exoskeletons focuses on developing exoskeletons, following the lifecycle of an exoskeleton from design to manufacture. It demonstrates how modern technologies can be used at every stage of the process, such as design methodologies, CAD/CAE/CAM software, rapid prototyping, test benches, materials, heat and surface treatments, and manufacturing processes. Several case studies are presented to provide detailed considerations on developing specific topics. Exoskeletons are designed to provide work-power, rehabilitation, and assistive training to sports and military applications. Beginning with a review of the history of exoskeletons from ancient to modern times, the book builds on this by mapping out recent innovations and state-of-the-art technologies that utilize advanced exoskeleton design. Presenting a comprehensive guide to computer design tools used by bioengineers, the book demonstrates the capabilities of modern software at all stages of the process, looking at computer-aided design, manufacturing, and engineering. It also details the materials used to create exoskeletons, notably steels, engineering polymers, composites, and emerging materials. Manufacturing processes, both conventional and unconventional are discussed—for example, casting, powder metallurgy, additive manufacturing, and heat and surface treatments. This book is essential reading for those in the field of exoskeletons, such as designers, workers in research and development, engineering and design students, and those interested in robotics applied to medical devices.




Technology 2001


Book Description




Product Engineering


Book Description

This book contains an edited version of the lectures and selected contributions presented during the Advanced Summer Institute (ASI) on "Product Engineering: Tools and Methods based on Virtual Reality" held at Chania (Greece), 30th May - 6th June 2007. The ASI was devoted to the Product Engineering field, with particular attention being given to the aspects related to Virtual Reality (VR) technologies, and their use and added value in engineering.




Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this jOint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 40 (thesis year 1995) a total of 10,746 thesis titles from 19 Canadian and 144 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 40 reports theses submitted in 1995, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.




Designing Small Weapons


Book Description

This book focuses on developing small weapons, following the lifecycle of a firearm from design to manufacture. It demonstrates how modern technologies can be used at every stage of the process, such as design methodologies, CAD/CAE/CAM software, rapid prototyping, test benches, materials, heat and surface treatments, and manufacturing processes. Several case studies are presented to provide detailed considerations on developing specific topics. Small weapons are designed to be carried by one person; examples are pistols, revolvers, rifles, carbines, shotguns, and submachine guns. Beginning with a review of the history of weapons from ancient to modern times, this book builds on this by mapping out recent innovations and state-of-the-art technologies that have advanced small weapon design. Presenting a comprehensive guide to computer design tools used by weapon engineers, this book demonstrates the capabilities of modern software at all stages of the process, looking at the computer-aided design, engineering, and manufacturing. It also details the materials used to create small weapons, notably steels, engineering polymers, composites, and emerging materials. Manufacturing processes, both conventional and unconventional, are discussed, for example, casting, powder metallurgy, additive manufacturing, and heat and surface treatments. This book is essential reading to those in the field of weapons, such as designers, workers in research and development, engineering and design students, students at military colleges, sportsmen, hunters, and those interested in firearms. Dr. Jose Martin Herrera-Ramirez is a military engineer with experience in the field of weapon and ammunition development. After receiving his PhD in Materials Science and Engineering from the Paris School of Mines in France, he was the head of the Applied Research Center and Technology Development for the Mexican Military Industry (CIADTIM). He now researches the development of metallic alloys and composites at the Research Center for Advanced Materials (CIMAV) in Chihuahua, Mexico. Dr. Luis Adrian Zuñiga-Aviles is a military engineer with wide experience in the field of weapon and ammunition development. He was head of the prototypes and simulation departments at the Applied Research Center and Technology Development for the Mexican Military Industry (CIADTIM) and head of engineering of the Production directorate. He received his PhD in Science and Technology on Mechatronics from the Center for Engineering and Industrial Development (CIDESI) in Queretaro, Mexico. He now researches the new product design and development for military application, machinery, robotics, and medical devices in the Faculty of Medicine at the Autonomous University of Mexico State (UAEMex) and the Faculty of Engineering at UAEMex as part of the Researchers for Mexico program CONACYT.




Technology 2000


Book Description