Modelling Financial Derivatives with MATHEMATICA ®


Book Description

CD plus book for financial modelling, requires Mathematica 3 or 2.2; runs on most platforms.




Computational Financial Mathematics using MATHEMATICA®


Book Description

Given the explosion of interest in mathematical methods for solving problems in finance and trading, a great deal of research and development is taking place in universities, large brokerage firms, and in the supporting trading software industry. Mathematical advances have been made both analytically and numerically in finding practical solutions. This book provides a comprehensive overview of existing and original material, about what mathematics when allied with Mathematica can do for finance. Sophisticated theories are presented systematically in a user-friendly style, and a powerful combination of mathematical rigor and Mathematica programming. Three kinds of solution methods are emphasized: symbolic, numerical, and Monte-- Carlo. Nowadays, only good personal computers are required to handle the symbolic and numerical methods that are developed in this book. Key features: * No previous knowledge of Mathematica programming is required * The symbolic, numeric, data management and graphic capabilities of Mathematica are fully utilized * Monte--Carlo solutions of scalar and multivariable SDEs are developed and utilized heavily in discussing trading issues such as Black--Scholes hedging * Black--Scholes and Dupire PDEs are solved symbolically and numerically * Fast numerical solutions to free boundary problems with details of their Mathematica realizations are provided * Comprehensive study of optimal portfolio diversification, including an original theory of optimal portfolio hedging under non-Log-Normal asset price dynamics is presented The book is designed for the academic community of instructors and students, and most importantly, will meet the everyday trading needs of quantitatively inclined professional and individual investors.




Hypermodels In Mathematical Finance: Modelling Via Infinitesimal Analysis


Book Description

At the beginning of the new millennium, two unstoppable processes are taking place in the world: (1) globalization of the economy; (2) information revolution. As a consequence, there is greater participation of the world population in capital market investment, such as bonds and stocks and their derivatives. Hence there is a need for risk management and analytic theory explaining the market. This leads to quantitative tools based on mathematical methods, i.e. the theory of mathematical finance.Ever since the pioneer work of Black, Scholes and Merton in the 70's, there has been rapid growth in the study of mathematical finance, involving ever more sophisticated mathematics. However, from the practitioner's point of view, it is desirable to have simpler and more useful mathematical tools.This book introduces research students and practitioners to the intuitive but rigorous hypermodel techniques in finance. It is based on Robinson's infinitesimal analysis, which is easily grasped by anyone with as little background as first-year calculus. It covers topics such as pricing derivative securities (including the Black-Scholes formula), hedging, term structure models of interest rates, consumption and equilibrium. The reader is introduced to mathematical tools needed for the aforementioned topics. Mathematical proofs and details are given in an appendix. Some programs in MATHEMATICA are also included.




Pricing Derivative Securities (2nd Edition)


Book Description

This book presents techniques for valuing derivative securities at a level suitable for practitioners, students in doctoral programs in economics and finance, and those in masters-level programs in financial mathematics and computational finance. It provides the necessary mathematical tools from analysis, probability theory, the theory of stochastic processes, and stochastic calculus, making extensive use of examples. It also covers pricing theory, with emphasis on martingale methods. The chapters are organized around the assumptions made about the dynamics of underlying price processes. Readers begin with simple, discrete-time models that require little mathematical sophistication, proceed to the basic Black-Scholes theory, and then advance to continuous-time models with multiple risk sources. The second edition takes account of the major developments in the field since 2000. New topics include the use of simulation to price American-style derivatives, a new one-step approach to pricing options by inverting characteristic functions, and models that allow jumps in volatility and Markov-driven changes in regime. The new chapter on interest-rate derivatives includes extensive coverage of the LIBOR market model and an introduction to the modeling of credit risk. As a supplement to the text, the book contains an accompanying CD-ROM with user-friendly FORTRAN, C++, and VBA program components.




Option Theory


Book Description

A unified development of the subject, presenting the theory of options in each of the different forms and stressing the equivalence between each of the methodologies. * Demystifies some of the more complex topics. * Derives practical, tangible results using the theory, to help practitioners in problem solving. * Applies the results obtained to the analysis and pricing of options in the equity, currency, commodity and interest rate markets. * Gives the reader the analytical tools and technical jargon to understand the current technical literature available. * Provides a user-friendly reference on option theory for practicing investors and traders.




Risk-Neutral Valuation


Book Description

This second edition - completely up to date with new exercises - provides a comprehensive and self-contained treatment of the probabilistic theory behind the risk-neutral valuation principle and its application to the pricing and hedging of financial derivatives. On the probabilistic side, both discrete- and continuous-time stochastic processes are treated, with special emphasis on martingale theory, stochastic integration and change-of-measure techniques. Based on firm probabilistic foundations, general properties of discrete- and continuous-time financial market models are discussed.




Financial Economics, Risk And Information (2nd Edition)


Book Description

Financial Economics, Risk and Information presents the fundamentals of finance in static and dynamic frameworks with focus on risk and information. The objective of this book is to introduce undergraduate and first-year graduate students to the methods and solutions of the main problems in finance theory relating to the economics of uncertainty and information. The main goal of the second edition is to make the materials more accessible to a wider audience of students and finance professionals. The focus is on developing a core body of theory that will provide the student with a solid intellectual foundation for more advanced topics and methods. The new edition has streamlined chapters and topics, with new sections on portfolio choice under alternative information structures. The starting point is the traditional mean-variance approach, followed by portfolio choice from first principles. The topics are extended to alternative market structures, alternative contractual arrangements and agency, dynamic stochastic general equilibrium in discrete and continuous time, attitudes towards risk and towards inter-temporal substitution in discrete and continuous time; and option pricing. In general, the book presents a balanced introduction to the use of stochastic methods in discrete and continuous time in the field of financial economics.




Stochastic Calculus and Financial Applications


Book Description

Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH




PDE and Martingale Methods in Option Pricing


Book Description

This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.




Security Market Imperfections in Worldwide Equity Markets


Book Description

The study of security market imperfections, namely the predictability of equity stock returns, is one of the fundamental research areas in financial modelling. These anomalies, which are not consistent with existing theories, concern the relation between stock returns and variables, such as firm size and earnings-to-price ratios, and seasonal effects, such as January and turn-of-the-month. This book provides the most complete and current account of work in the area. Leading academics and investment researchers have combined to produce a comprehensive coverage of the subject, including both cross-sectional and time series analyses, as well as discussing the measurement of risk and prediction models that have been used by institutional investors. The studies cover many worldwide markets including the US, Japan, Asia, and Europe. The book will be invaluable for courses in financial engineering, investment and portfolio management, and as a reference for investment professionals seeking an up-to-date source on return predictability.