Modelling Irregularly Spaced Financial Data


Book Description

This book provides a methodological framework to model univariate and multivariate irregularly spaced financial data. It gives a thorough review of recent developments in the econometric literature, puts forward existing approaches and opens up new directions. The book presents alternative ways to model so-called financial point processes using dynamic duration as well as intensity models and discusses their ability to account for specific features of point process data, like the occurrence of time-varying covariates, censoring mechanisms and multivariate structures. Moreover, it illustrates the use of various types of financial point processes to model financial market activity from different viewpoints and to construct volatility and liquidity measures under explicit consideration of the passing trading time.




Agent-Based Modeling


Book Description

This book reconciles the existence of technical trading with the Efficient Market Hypothesis. By analyzing a well-known agent-based model, the Santa Fe Institute Artificial Stock Market (SFI-ASM), it finds that when selective forces are weak, financial evolution cannot guarantee that only the fittest trading rules will survive. Its main contribution lies in the application of standard results from population genetics which have widely been neglected in the agent-based community.




Artificial Markets Modeling


Book Description

This volume features contributions to agent-based computational modeling from the social sciences and computer sciences. It presents applications of methodologies and tools, focusing on the uses, requirements, and constraints of agent-based models used by social scientists. Topics include agent-based macroeconomics, the emergence of norms and conventions, the dynamics of social and economic networks, and behavioral models in financial markets.




Economic Dynamics and Information


Book Description

This book analyzes the existence of equilibria in economies having a measured space of agents and a continuum of agents and commodities. Excessive homogeneity with respect to agent productivity leads to instability and non-uniqueness of a given stationary state and the indeterminacy of the corresponding stationary state equilibrium. Sufficient heterogeneity leads to global saddle-path stability, uniqueness of a given stationary state and the global uniqueness of the corresponding equilibrium.




Econometric Modelling of Stock Market Intraday Activity


Book Description

Over the past 25 years, applied econometrics has undergone tremen dous changes, with active developments in fields of research such as time series, labor econometrics, financial econometrics and simulation based methods. Time series analysis has been an active field of research since the seminal work by Box and Jenkins (1976), who introduced a gen eral framework in which time series can be analyzed. In the world of financial econometrics and the application of time series techniques, the ARCH model of Engle (1982) has shifted the focus from the modelling of the process in itself to the modelling of the volatility of the process. In less than 15 years, it has become one of the most successful fields of 1 applied econometric research with hundreds of published papers. As an alternative to the ARCH modelling of the volatility, Taylor (1986) intro duced the stochastic volatility model, whose features are quite similar to the ARCH specification but which involves an unobserved or latent component for the volatility. While being more difficult to estimate than usual GARCH models, stochastic volatility models have found numerous applications in the modelling of volatility and more particularly in the econometric part of option pricing formulas. Although modelling volatil ity is one of the best known examples of applied financial econometrics, other topics (factor models, present value relationships, term structure 2 models) were also successfully tackled.




Data Science, Classification, and Related Methods


Book Description

This volume contains selected papers covering a wide range of topics, including theoretical and methodological advances relating to data gathering, classification and clustering, exploratory and multivariate data analysis, and knowledge seeking and discovery. The result is a broad view of the state of the art, making this an essential work not only for data analysts, mathematicians, and statisticians, but also for researchers involved in data processing at all stages from data gathering to decision making.




Econometrics of Financial High-Frequency Data


Book Description

The availability of financial data recorded on high-frequency level has inspired a research area which over the last decade emerged to a major area in econometrics and statistics. The growing popularity of high-frequency econometrics is driven by technological progress in trading systems and an increasing importance of intraday trading, liquidity risk, optimal order placement as well as high-frequency volatility. This book provides a state-of-the art overview on the major approaches in high-frequency econometrics, including univariate and multivariate autoregressive conditional mean approaches for different types of high-frequency variables, intensity-based approaches for financial point processes and dynamic factor models. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications to volatility and liquidity estimation, order book modelling and market microstructure analysis.




Market Risk Analysis, Practical Financial Econometrics


Book Description

Written by leading market risk academic, Professor Carol Alexander, Practical Financial Econometrics forms part two of the Market Risk Analysis four volume set. It introduces the econometric techniques that are commonly applied to finance with a critical and selective exposition, emphasising the areas of econometrics, such as GARCH, cointegration and copulas that are required for resolving problems in market risk analysis. The book covers material for a one-semester graduate course in applied financial econometrics in a very pedagogical fashion as each time a concept is introduced an empirical example is given, and whenever possible this is illustrated with an Excel spreadsheet. All together, the Market Risk Analysis four volume set illustrates virtually every concept or formula with a practical, numerical example or a longer, empirical case study. Across all four volumes there are approximately 300 numerical and empirical examples, 400 graphs and figures and 30 case studies many of which are contained in interactive Excel spreadsheets available from the the accompanying CD-ROM. Empirical examples and case studies specific to this volume include: Factor analysis with orthogonal regressions and using principal component factors; Estimation of symmetric and asymmetric, normal and Student t GARCH and E-GARCH parameters; Normal, Student t, Gumbel, Clayton, normal mixture copula densities, and simulations from these copulas with application to VaR and portfolio optimization; Principal component analysis of yield curves with applications to portfolio immunization and asset/liability management; Simulation of normal mixture and Markov switching GARCH returns; Cointegration based index tracking and pairs trading, with error correction and impulse response modelling; Markov switching regression models (Eviews code); GARCH term structure forecasting with volatility targeting; Non-linear quantile regressions with applications to hedging.




Modeling Financial Time Series with S-PLUS


Book Description

The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.




Econophysics of Order-driven Markets


Book Description

The primary goal of the book is to present the ideas and research findings of active researchers from various communities (physicists, economists, mathematicians, financial engineers) working in the field of "Econophysics", who have undertaken the task of modelling and analyzing order-driven markets. Of primary interest in these studies are the mechanisms leading to the statistical regularities ("stylized facts") of price statistics. Results pertaining to other important issues such as market impact, the profitability of trading strategies, or mathematical models for microstructure effects, are also presented. Several leading researchers in these fields report on their recent work and also review the contemporary literature. Some historical perspectives, comments and debates on recent issues in Econophysics research are also included.