Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites


Book Description

Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. It will act as a detailed reference resource to encourage future research in natural fiber and hybrid composite materials, an area much in demand due to the need for more sustainable, recyclable, and eco-friendly composites in a broad range of applications. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials. - Contains contributions from leading experts in the field - Discusses recent progress on failure analysis, SHM, durability, life prediction and the modelling of damage in natural fiber-based composite materials - Covers experimental, analytical and numerical analysis - Provides detailed and comprehensive information on mechanical properties, testing methods and modelling techniques




Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites


Book Description

Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. It will act as a detailed reference resource to encourage future research in natural fiber and hybrid composite materials, an area much in demand due to the need for more sustainable, recyclable, and eco-friendly composites in a broad range of applications. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.




Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites


Book Description

Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites covers key aspects of fracture and failure in natural/synthetic fiber reinforced polymer based composite materials, ranging from crack propagation, to crack growth, and from notch-size effect, to damage-tolerant design. Topics of interest include mechanical properties, such as tensile, flexural, compression, shear, impact, fracture toughness, low and high velocity impact, and anti-ballistic properties of natural fiber, synthetic fibers and hybrid composites materials. It also covers physical properties, such as density, water absorption, thickness swelling, and void content of composite materials fabricated from natural or synthetic materials. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials. - Contains contributions from leading experts in the field - Discusses recent progress on failure analysis, SHM, durability, life prediction and the modelling of damage in natural fiber-based composite materials - Covers experimental, analytical and numerical analysis - Provides detailed and comprehensive information on mechanical properties, testing methods and modelling techniques




Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites


Book Description

Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites provides detailed information on failure analysis, mechanical and physical properties, structural health monitoring, durability and life prediction, modelling of damage processes of natural fiber, synthetic fibers, and natural/natural, and natural/synthetic fiber hybrid composites. It provides a comprehensive review of both established and promising new technologies currently under development in the emerging area of structural health monitoring in aerospace, construction and automotive structures. In addition, it describes SHM methods and sensors related to specific composites and how advantages and limitations of various sensors and methods can help make informed choices. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.




Natural Fiber Composites


Book Description

This book covers the use of accessible natural fibers towards the requirement and compatibility of industrial sustainability. Using natural characteristics of composites through technology and techniques, the inherent qualities of natural fibers are discussed in relation to the design of experiments. This book also elaborates on the durability of composites subjected to environmental conditions, biodegradability, environmental issues, product life cycle assessment and testing methods. Offers detailed coverage of functional aspects of natural fiber composites along with applications Discusses natural fiber inherent character based composite formation techniques Reviews micro-mechanical and macro-mechanical properties and functional use of natural fiber reinforced composites Content based on functional requirements selection and process consideration Discusses product life cycle assessment and recycling techniques This book is aimed at researchers, students, industrialists, and fabricators of composites.




Green Biocomposites for Biomedical Engineering


Book Description

Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications combines emergent research outcomes with fundamental theoretical concepts relevant to processing, properties and applications of advanced green composites in the field of biomedical engineering. The book outlines the design elements and characterization of biocomposites, highlighting each class of biocomposite separately. A broad range of biomedical applications for biocomposites is then covered, with a final section discussing the ethics and safety regulations associated with manufacturing and the use of biocomposites. With contributions from eminent editors and recognized authors around the world, this book is a vital reference for researchers in biomedical engineering, materials science and environmental science, both in industry and academia. - Provides comprehensive information regarding current advances in the interdisciplinary field of eco-friendly green composite materials for biomedical applications - Offers coverage of state-of-the-art physics-based advanced models used in composites - Lists a broad range of characterization techniques and biomedical applications




Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites


Book Description

Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. The book presents key aspects of fracture and failure in natural/synthetic, fiber reinforced, polymer based composite materials, ranging from crack propagation, to crack growth, and from notch-size effect, to damage-tolerant design. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.




Finite Element Analysis of Polymers and Composites


Book Description

Finite Element Analysis of Polymers and its Composites offers up-to-date and significant findings on the finite element analysis of polymers and its composite materials. It is important to point out, that to date, there are no books that have been published in this concept. Thus, academicians, researchers, scientists, engineers, and students in the similar field will benefit from this highly application-oriented book. This book summarizes the experimental, mathematical and numerical analysis of polymers and its composite materials through finite element method. It provides detailed and comprehensive information on mechanical properties, fatigue and creep behaviour, thermal behaviour, vibrational analysis, testing methods and their modeling techniques. In addition, this book lists the main industrial sectors in which polymers and its composite materials simulation is used, and their gains from it, including aeronautics, medical, aerospace, automotive, naval, energy, civil, sports, manufacturing and even electronics. Expands knowledge about the finite element analysis of polymers and composite materials to broaden application range Presents an extensive survey of recent developments in research Offers advancements of finite element analysis of polymers and composite materials Written by leading experts in the field Provides cutting-edge, up-to-date research on the characterization, analysis, and modeling of polymeric composite materials




Value-Added Biocomposites


Book Description

Value-Added Biocomposites: Technology, Innovation, and Opportunity explores advances in research, processing, manufacturing, and novel applications of biocomposites. It describes the current market situation, commercial competition, and societal and economic impacts and advantages of substituting biocomposites for conventional composites, including natural fibers and bioplastics. FEATURES Discusses manufacturing and processing procedures that focus on improving physical, mechanical, thermal, electrical, chemical, and biological properties and achieving required specifications of downstream industries and customers Analyzes the wide range of available base materials and fillers of biocomposites and bioplastics in terms of the strength and weaknesses of materials and economic potential in the market Displays special and unique properties of biocomposites in different market sectors Showcases the insight of expert scientists and engineers with first-hand experience working with biocomposites across various industries Covers environmental factors, life cycle assessment, and waste recovery Combining technical, economic, and environmental topics, this work provides researchers, advanced students, and industry professionals a holistic overview of the value that biocomposites add across a variety of engineering applications and how to balance research and development with practical results.




Sustainability of Green and Eco-friendly Composites


Book Description

The book explores the pertinent aspects of sustainability of green and eco-friendly composites including their development methods and processing, characterization, properties, and applications. Significance for the design and engineering of high-performance green and eco-friendly composites is discussed in the present book. Insights on a wide spectrum of potential advanced applications ranging from automotive and aerospace to biomedical and packaging, etc. using these are highlighted. Further, it discusses life cycle and carbon footprint assessment of sustainable materials. Features: Explores different processing methods of green and eco-friendly composites Discusses development and optimization of green nanocomposites for sustainable manufacturing Collates modern green and eco-friendly composites research from theory to application Covers hybridization of reinforced fibers on the performance of green and eco-friendly composites Analyzes and discusses calculation of carbon footprint and Life Cycle Assessment of composites This book is aimed at graduate students and researchers in materials science and engineering, sustainable materials, composites, and nanomaterials.