Handbook of Indoor Air Quality


Book Description

People live in indoor environment about 90% of lifetime and an adult inhales about 15 kg air each day, over 75% of the human body’s daily mass intake (air, food, water). Therefore, indoor air quality (IAQ) is very important to human health. This book provides the basic knowledge of IAQ and highlights the research achievements in the past two decades. It covers the following 12 sections: introduction, indoor air chemicals, indoor air particles, measurement and evaluation, source/sink characteristics, indoor chemistry, human exposure to indoor pollutants, health effects and health risk assessment, IAQ and cognitive performance, standards and guidelines, IAQ control, and air quality in various indoor environments. It provides a combination of an introduction to various aspects on IAQ studies, the current state-of-knowledge, various advances and the perspective of IAQ studies. It will be very helpful for the researchers and technicians in the IAQ and the related fields. It is also useful for experts in other fields and general readers who want to obtain a basic understanding of and research advances in the field of IAQ. A group of experts in IAQ research have been recruited to write the chapters. Their research interests and experience cover the scope of the book. In addition, some experienced experts in IAQ field have been invited as advisors or reviewers to give their comments, suggestions and revisions on the handbook framework and the chapter details. Their contribution guarantees the quality of the book. We are very grateful to them. Last but not least, we express our heartfelt thanks to Prof. Spengler, Harvard University, for writing the foreword of the current Handbook of Indoor Air Quality both as a pioneer scientist who contributed greatly to indoor air science and as an Editor-in-chief of Handbook of Indoor Air Quality 2001, 1st ed. New York: McGraw-Hill. In addition to hard copies, the book is also published online and will be updated by the authors as needed to keep it aligned with current knowledge. These salient features can make the handbook fresh with the research development.




Volatile Organic Compounds in the Atmosphere


Book Description

Every day, large quantities of volatile organic compounds (VOCs) are emitted into the atmosphere from both anthropogenic and natural sources. The formation of gaseous and particulate secondary products caused by oxidation of VOCs is one of the largest unknowns in the quantitative prediction of the earth’s climate on a regional and global scale, and on the understanding of local air quality. To be able to model and control their impact, it is essential to understand the sources of VOCs, their distribution in the atmosphere and the chemical transformations which remove these compounds from the atmosphere. In recent years techniques for the analysis of organic compounds in the atmosphere have been developed to increase the spectrum of detectable compounds and their detection limits. New methods have been introduced to increase the time resolution of those measurements and to resolve more complex mixtures of organic compounds. Volatile Organic Compounds in the Atmosphere describes the current state of knowledge of the chemistry of VOCs as well as the methods and techniques to analyse gaseous and particulate organic compounds in the atmosphere. The aim is to provide an authoritative review to address the needs of both graduate students and active researchers in the field of atmospheric chemistry research.







Toxicity of Building Materials


Book Description

From long-standing worries regarding the use of lead and asbestos to recent research into carcinogenic issues related to the use of plastics in construction, there is growing concern regarding the potential toxic effects of building materials on health. Toxicity of building materials provides an essential guide to this important problem and its solutions.Beginning with an overview of the material types and potential health hazards presented by building materials, the book goes on to consider key plastic materials. Materials responsible for formaldehyde and volatile organic compound emissions, as well as semi-volatile organic compounds, are then explored in depth, before a review of wood preservatives and mineral fibre-based building materials. Issues related to the use of radioactive materials and materials that release toxic fumes during burning are the focus of subsequent chapters, followed by discussion of the range of heavy metals, materials prone to mould growth, and antimicrobials. Finally, Toxicity of building materials concludes by considering the potential hazards posed by waste based/recycled building materials, and the toxicity of nanoparticles.With its distinguished editors and international team of expert contributors, Toxicity of building materials is an invaluable tool for all civil engineers, materials researchers, scientists and educators working in the field of building materials. - Provides an essential guide to the potential toxic effects of building materials on health - Comprehensively examines materials responsible for formaldehyde and volatile organic compound emissions, as well as semi-volatile organic compounds - Later chapters focus on issues surrounding the use of radioactive materials and materials that release toxic fumes during burning




Advanced Gas Chromatography


Book Description

Progress in agricultural, biomedical and industrial applications' is a compilation of recent advances and developments in gas chromatography and its applications. The chapters cover various aspects of applications ranging from basic biological, biomedical applications to industrial applications. Book chapters analyze new developments in chromatographic columns, microextraction techniques, derivatisation techniques and pyrolysis techniques. The book also includes several aspects of basic chromatography techniques and is suitable for both young and advanced chromatographers. It includes some new developments in chromatography such as multidimensional chromatography, inverse chromatography and some discussions on two-dimensional chromatography. The topics covered include analysis of volatiles, toxicants, indoor air, petroleum hydrocarbons, organometallic compounds and natural products. The chapters were written by experts from various fields and clearly assisted by simple diagrams and tables. This book is highly recommended for chemists as well as non-chemists working in gas chromatography.




WHO Guidelines for Indoor Air Quality


Book Description

This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.







Mass Spectrometry for the Clinical Laboratory


Book Description

Mass Spectrometry for the Clinical Laboratory is an accessible guide to mass spectrometry and the development, validation, and implementation of the most common assays seen in clinical labs. It provides readers with practical examples for assay development, and experimental design for validation to meet CLIA requirements, appropriate interference testing, measuring, validation of ion suppression/matrix effects, and quality control. These tools offer guidance on what type of instrumentation is optimal for each assay, what options are available, and the pros and cons of each. Readers will find a full set of tools that are either directly related to the assay they want to adopt or for an analogous assay they could use as an example. Written by expert users of the most common assays found in a clinical laboratory (clinical chemists, toxicologists, and clinical pathologists practicing mass spectrometry), the book lays out how experts in the field have chosen their mass spectrometers, purchased, installed, validated, and brought them on line for routine testing. The early chapters of the book covers what the practitioners have learned from years of experience, the challenges they have faced, and their recommendations on how to build and validate assays to avoid problems. These chapters also include recommendations for maintaining continuity of quality in testing. The later parts of the book focuses on specific types of assays (therapeutic drugs, Vitamin D, hormones, etc.). Each chapter in this section has been written by an expert practitioner of an assay that is currently running in his or her clinical lab. Provides readers with the keys to choosing, installing, and validating a mass spectrometry platform Offers tools to evaluate, validate, and troubleshoot the most common assays seen in clinical pathology labs Explains validation, ion suppression, interference testing, and quality control design to the detail that is required for implementation in the lab




Organic Indoor Air Pollutants


Book Description

With the quality of indoor air ranking highly in our lives, this second, completely, revised edition now includes 12 completely new chapters addressing both chemical and analytical aspects of organic pollutants. Sources of indoor air pollutants, measurement and detection as well as evaluation are covered filling the gap in the literature caused by this topical subject. This book is divided into four clearly defined parts: measuring organic indoor pollutants, investigation concepts and quality guidelines, field studies, and emission studies. The authors cover physico-chemical fundamentals of organic pollutants, relevant definitions and terminology, emission sources, sampling techniques and instrumentation, exposure assessment as well as methods for control. Test methods and studies for various indoor environments are described, such as automobile interiors, museum environments, or rooms with air ventilation. Emission sources covered include household and consumer products as well as electronic devices and office equipment. The book is aimed at chemists, physicists, biologists, and medical doctors at universities and research facilities, in industry and environmental laboratories as well as regulative bodies.