Modelling Proteasome Dynamics in a Bayesian Framework


Book Description

Sabine Stübler compares different proteasome isoforms and subtypes in terms of their transport and active site-related parameters applying an existing computational model. In a second step, the author extends this model to be able to describe the influence of proteasome inhibitors in in vitro experiments. The computational model, which describes the hydrolysis of short fluorogenic peptides by the 20S proteasome, is calibrated to experimental data from different proteasome isoforms using an approximate Bayesian computation approach. The dynamics of proteasome inhibitors are included into the model in order to demonstrate how to modulate the inhibitor’s transport parameters for strong or isoform-specific inhibition.




Bayesian Statistics 9


Book Description

The Valencia International Meetings on Bayesian Statistics - established in 1979 and held every four years - have been the forum for a definitive overview of current concerns and activities in Bayesian statistics. These are the edited Proceedings of the Ninth meeting, and contain the invited papers each followed by their discussion and a rejoinder by the authors(s). In the tradition of the earlier editions, this encompasses an enormous range of theoretical and applied research, high lighting the breadth, vitality and impact of Bayesian thinking in interdisciplinary research across many fields as well as the corresponding growth and vitality of core theory and methodology. The Valencia 9 invited papers cover a broad range of topics, including foundational and core theoretical issues in statistics, the continued development of new and refined computational methods for complex Bayesian modelling, substantive applications of flexible Bayesian modelling, and new developments in the theory and methodology of graphical modelling. They also describe advances in methodology for specific applied fields, including financial econometrics and portfolio decision making, public policy applications for drug surveillance, studies in the physical and environmental sciences, astronomy and astrophysics, climate change studies, molecular biosciences, statistical genetics or stochastic dynamic networks in systems biology.




Cryo-EM Part B: 3-D Reconstruction


Book Description

This volume is dedicated to a description of the instruments, samples, protocols, and analyses that belong to cryo-EM. It emphasizes the relatedness of the ideas, instrumentation, and methods underlying all cryo-EM approaches, which allow practitioners to easily move between them. Within each section, the articles are ordered according to the most common symmetry of the sample to which their methods are applied. - Includes time-tested core methods and new innovations applicable to any researcher - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide




A First Course in Systems Biology


Book Description

A First Course in Systems Biology is a textbook designed for advanced undergraduate and graduate students. Its main focus is the development of computational models and their applications to diverse biological systems. Because the biological sciences have become so complex that no individual can acquire complete knowledge in any given area of specialization, the education of future systems biologists must instead develop a student's ability to retrieve, reformat, merge, and interpret complex biological information. This book provides the reader with the background and mastery of methods to execute standard systems biology tasks, understand the modern literature, and launch into specialized courses or projects that address biological questions using theoretical and computational means. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and larger-scale, often open-ended questions for further reflection.




Cancer Systems Biology


Book Description

The unprecedented amount of data produced with high-throughput experimentation forces biologists to employ mathematical representation and computation to glean meaningful information in systems-level biology. Applying this approach to the underlying molecular mechanisms of tumorgenesis, cancer research is enjoying a series of new discoveries and biological insights. Unique in its dualistic approach, this book introduces the concepts and theories of systems biology and their applications in cancer research. It presents basic cancer biology and cutting-edge topics of cancer research for computational biologists alongside systems biology analysis tools for experimental biologists.







Molecular Mechanisms of Aging


Book Description







Protein Conformational Dynamics


Book Description

This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.




Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules


Book Description

Small-angle scattering of X-rays (SAXS) and neutrons (SANS) is an established method for the structural characterization of biological objects in a broad size range from individual macromolecules (proteins, nucleic acids, lipids) to large macromolecular complexes. SAXS/SANS is complementary to the high resolution methods of X-ray crystallography and nuclear magnetic resonance, allowing for hybrid modeling and also accounting for available biophysical and biochemical data. Quantitative characterization of flexible macromolecular systems and mixtures has recently become possible. SAXS/SANS measurements can be easily performed in different conditions by adding ligands or binding partners, and by changing physical and/or chemical characteristics of the solvent to provide information on the structural responses. The technique provides kinetic information about processes like folding and assembly and also allows one to analyze macromolecular interactions. The major factors promoting the increasingly active use of SAXS/SANS are modern high brilliance X-ray and neutron sources, novel data analysis methods, and automation of the experiment, data processing and interpretation. In this book, following the presentation of the basics of scattering from isotropic macromolecular solutions, modern instrumentation, experimental practice and advanced analysis techniques are explained. Advantages of X-rays (rapid data collection, small sample volumes) and of neutrons (contrast variation by hydrogen/deuterium exchange) are specifically highlighted. Examples of applications of the technique to different macromolecular systems are considered with specific emphasis on the synergistic use of SAXS/SANS with other structural, biophysical and computational techniques.