Evaluation of Soil Organic Matter Models


Book Description

Soil organic matter (SOM) represents a major pool of carbon within the biosphere, roughly twice than in atmospheric CO2. SOM models embody our best understanding of soil carbon dynamics and are needed to predict how global environmental change will influence soil carbon stocks. These models are also required for evaluating the likely effectiveness of different mitigation options. The first important step towards systematically evaluating the suitability of SOM models for these purposes is to test their simulations against real data. Since changes in SOM occur slowly, long-term datasets are required. This volume brings together leading SOM model developers and experimentalists to test SOM models using long-term datasets from diverse ecosystems, land uses and climatic zones within the temperate region.




Soil Carbon Dynamics


Book Description

Carbon stored in soils represents the largest terrestrial carbon pool and factors affecting this will be vital in the understanding of future atmospheric CO2 concentrations. This book provides an integrated view on measuring and modeling soil carbon dynamics. Based on a broad range of in-depth contributions by leading scientists it gives an overview of current research concepts, developments and outlooks and introduces cutting-edge methodologies, ranging from questions of appropriate measurement design to the potential application of stable isotopes and molecular tools. It includes a standardised soil CO2 efflux protocol, aimed at data consistency and inter-site comparability and thus underpins a regional and global understanding of soil carbon dynamics. This book provides an important reference work for students and scientists interested in many aspects of soil ecology and biogeochemical cycles, policy makers, carbon traders and others concerned with the global carbon cycle.







Dynamics of Soil Organic Matter in Tropical Ecosystems


Book Description

Constituents of organic matter in temperate and tropical soils. Soil organic matter as a source and a sink of plant nUtrients. Interactions of soil organic matter and variable-charge clays. Biological processes regulating organic matter dynamics in tropical soils.




Land Use and Soil Resources


Book Description

Poor land management has degraded vast amounts of land, reduced our ability to produce enough food, and is a major threat to rural livelihoods in many developing countries. This book provides a thorough analysis of the multifaceted impacts of land use on soils. Abundantly illustrated with full-color images, it brings together renowned academics and policy experts to analyze the patterns, driving factors and proximate causes, and the socioeconomic impacts of soil degradation.




Methods in Ecosystem Science


Book Description

Ecology at the ecosystem level has both necessitated and benefited from new methods and technologies as well as those adapted from other disciplines. With the ascendancy of ecosystem science and management, the need has arisen for a comprehensive treatment of techniques used in this rapidly-growing field. Methods in Ecosystem Science answers that need by synthesizing the advantages, disadvantages and tradeoffs associated with the most commonly used techniques in both aquatic and terrestrial research. The book is divided into sections addressing carbon and energy dynamics, nutrient and water dynamics, manipulative ecosystem experiements and tools to synthesize our understanding of ecosystems. Detailed information about various methods will help researchers choose the most appropriate methods for their particular studies. Prominent scientists discuss how tools from a variety of disciplines can be used in ecosystem science at different scales.




Forest Succession


Book Description

Succession-nothing in plant, community, or ecosystem ecology has been so elaborated by terminology, so much reviewed, and yet so much the center of controversy. In a general sense, every ecologist uses the concept in teaching and research, but no two ecologists seem to have a unified concept of the details of succession. The word was used by Thoreau to describe, from a naturalist's point of view, the general changes observed during the transition of an old field to a forest. As data accumulated, a lengthy taxonomy of succession developed around early twentieth century ecologists such as Cooper, Clements, and Gleason. Now, nearer the end of the century, and after much discussion concerning the nature of vegetation communities, where do ecologists stand with respect to knowledge of ecological succession? The intent of this book is not to rehash classic philosophies of succession that have emerged through the past several decades of study, but to provide a forum for ecologists to present their current research and present-day interpretation of data. To this end, we brought together a group of scientists currently studying terrestrial plant succession, who represent research experience in a broad spectrum of different ecosystem types. The results of that meeting led to this book, which presents to the reader a unique summary of contemporary research on forest succession.




Climate Change and Terrestrial Ecosystem Modeling


Book Description

Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.




Biogeochemical Cycles


Book Description

Elements move through Earth's critical zone along interconnected pathways that are strongly influenced by fluctuations in water and energy. The biogeochemical cycling of elements is inextricably linked to changes in climate and ecological disturbances, both natural and man-made. Biogeochemical Cycles: Ecological Drivers and Environmental Impact examines the influences and effects of biogeochemical elemental cycles in different ecosystems in the critical zone. Volume highlights include: Impact of global change on the biogeochemical functioning of diverse ecosystems Biological drivers of soil, rock, and mineral weathering Natural elemental sources for improving sustainability of ecosystems Links between natural ecosystems and managed agricultural systems Non-carbon elemental cycles affected by climate change Subsystems particularly vulnerable to global change The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Author. Book Review: http://www.elementsmagazine.org/archives/e16_6/e16_6_dep_bookreview.pdf




Managing Organic Matter in Tropical Soils: Scope and Limitations


Book Description

Soil organic matter is a reservoir for plant nutrients, provides water-holding capacity, stabilizes soil structure against compaction and erosion, and thus determines soil productivity. All agriculture to some degree depends on soil organic matter. It has long been known that soil organic matter declines when land is taken into cultivation, and that the productivity of new agricultural land is governed by fertility contributions from decomposing natural organic matter. The expansion of agriculture to ever new and more fragile lands, particularly in tropical and developing regions, causes environmental degradation with local effects on soil quality, regional effects on landscape integrity and water quality, and global effects on carbon cycles and the atmosphere. This book summarizes current knowledge of the properties and dynamics of soil organic matter in the tropics, its role in determining soil quality, its stability and turnover, and the options for management in the context of tropical landuse systems, for a readership of resource scientists, economists and advanced students. Maintenance of organic matter is critical for preventing land degradation. Case studies and practical applications are therefore an important part of the book, as are the exploration of future directions in research and management.