Spatial Processes


Book Description




Stochastic Geometry, Spatial Statistics and Random Fields


Book Description

This volume is an attempt to provide a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, with special emphasis placed on fundamental classes of models and algorithms as well as on their applications, e.g. in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R which are widely used in the mathematical community. It can be seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered with a focus on asymptotic methods.




Spatial Simulation


Book Description

A ground-up approach to explaining dynamic spatial modelling for an interdisciplinary audience. Across broad areas of the environmental and social sciences, simulation models are an important way to study systems inaccessible to scientific experimental and observational methods, and also an essential complement to those more conventional approaches. The contemporary research literature is teeming with abstract simulation models whose presentation is mathematically demanding and requires a high level of knowledge of quantitative and computational methods and approaches. Furthermore, simulation models designed to represent specific systems and phenomena are often complicated, and, as a result, difficult to reconstruct from their descriptions in the literature. This book aims to provide a practical and accessible account of dynamic spatial modelling, while also equipping readers with a sound conceptual foundation in the subject, and a useful introduction to the wide-ranging literature. Spatial Simulation: Exploring Pattern and Process is organised around the idea that a small number of spatial processes underlie the wide variety of dynamic spatial models. Its central focus on three ‘building-blocks’ of dynamic spatial models – forces of attraction and segregation, individual mobile entities, and processes of spread – guides the reader to an understanding of the basis of many of the complicated models found in the research literature. The three building block models are presented in their simplest form and are progressively elaborated and related to real world process that can be represented using them. Introductory chapters cover essential background topics, particularly the relationships between pattern, process and spatiotemporal scale. Additional chapters consider how time and space can be represented in more complicated models, and methods for the analysis and evaluation of models. Finally, the three building block models are woven together in a more elaborate example to show how a complicated model can be assembled from relatively simple components. To aid understanding, more than 50 specific models described in the book are available online at patternandprocess.org for exploration in the freely available Netlogo platform. This book encourages readers to develop intuition for the abstract types of model that are likely to be appropriate for application in any specific context. Spatial Simulation: Exploring Pattern and Process will be of interest to undergraduate and graduate students taking courses in environmental, social, ecological and geographical disciplines. Researchers and professionals who require a non-specialist introduction will also find this book an invaluable guide to dynamic spatial simulation.




Statistical Analysis and Modelling of Spatial Point Patterns


Book Description

Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.




Spatial Econometrics: Methods and Models


Book Description

Spatial econometrics deals with spatial dependence and spatial heterogeneity, critical aspects of the data used by regional scientists. These characteristics may cause standard econometric techniques to become inappropriate. In this book, I combine several recent research results to construct a comprehensive approach to the incorporation of spatial effects in econometrics. My primary focus is to demonstrate how these spatial effects can be considered as special cases of general frameworks in standard econometrics, and to outline how they necessitate a separate set of methods and techniques, encompassed within the field of spatial econometrics. My viewpoint differs from that taken in the discussion of spatial autocorrelation in spatial statistics - e.g., most recently by Cliff and Ord (1981) and Upton and Fingleton (1985) - in that I am mostly concerned with the relevance of spatial effects on model specification, estimation and other inference, in what I caIl a model-driven approach, as opposed to a data-driven approach in spatial statistics. I attempt to combine a rigorous econometric perspective with a comprehensive treatment of methodological issues in spatial analysis.




Modelling Spatial Processes


Book Description

A novel methodology is put forward in this book, which empowers researchers to investigate and identify potential spatial processes among a set of regions. Spatial processes and their underlying functional spatial relationships are commonly observed in the geosciences and related disciplines. Examples are spatially autocorrelated random variables manifesting themselves in distinct global patterns as well as local clusters and hot spots, or spatial interaction leading to stochastic ties among the regions. An example from observational epidemiology demonstrates the flexibility of Moran's approach by analyzing the spatial distribution of cancer data from several perspectives. Recent advances in computing technology, computer algorithms, statistical techniques and global and local spatial patterns by means of Moran's I feasability. Moran's I is an extremely versatile tool for exploring and analyzing spatial data and testing spatial hypotheses.




Spatial Modeling in GIS and R for Earth and Environmental Sciences


Book Description

Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example




Statistical Inference for Spatial Processes


Book Description

The study of spatial processes and their applications is an important topic in statistics and finds wide application particularly in computer vision and image processing. This book is devoted to statistical inference in spatial statistics and is intended for specialists needing an introduction to the subject and to its applications. One of the themes of the book is the demonstration of how these techniques give new insights into classical procedures (including new examples in likelihood theory) and newer statistical paradigms such as Monte-Carlo inference and pseudo-likelihood. Professor Ripley also stresses the importance of edge effects and of lack of a unique asymptotic setting in spatial problems. Throughout, the author discusses the foundational issues posed and the difficulties, both computational and philosophical, which arise. The final chapters consider image restoration and segmentation methods and the averaging and summarising of images. Thus, the book will find wide appeal to researchers in computer vision, image processing, and those applying microscopy in biology, geology and materials science, as well as to statisticians interested in the foundations of their discipline.




Case Studies in Spatial Point Process Modeling


Book Description

Point process statistics is successfully used in fields such as material science, human epidemiology, social sciences, animal epidemiology, biology, and seismology. Its further application depends greatly on good software and instructive case studies that show the way to successful work. This book satisfies this need by a presentation of the spatstat package and many statistical examples. Researchers, spatial statisticians and scientists from biology, geosciences, materials sciences and other fields will use this book as a helpful guide to the application of point process statistics. No other book presents so many well-founded point process case studies. From the reviews: "For those interested in analyzing their spatial data, the wide variatey of examples and approaches here give a good idea of the possibilities and suggest reasonable paths to explore." Michael Sherman for the Journal of the American Statistical Association, December 2006




Models of Spatial Processes


Book Description

This book approaches the study of patterns by emphasising the processes responsible for them; it emphasises the logical format of process-to-pattern rather than the more wasteful pattern-to-process approach. The concern is primarily with two-dimensional surfaces, which is the way most maps are used for analysis. The material is organised into sections on process models responsible for point patterns, for line patterns and then for area patterns. It represents a synthesis of the work done on patterns in a number of fields and a large literature is reviewed in the process of the synthesis. In many respects this book represents a translation of complex mathematical materials into a readable and relatively simple verbal approach to the subject and thus brings the more sophisticated aspects to a larger number of students than has been done before. The reader need only have an elementary background in statistics. The basic probability theory required by the text is given in an appendix.