Models and Simulations of the Electric Field in Deep Brain Stimulation


Book Description

Deep brain stimulation (DBS) is an established surgical therapy for movement disorders such as Parkinson’s disease (PD) and essential tremor (ET). A thin electrode is implanted in a predefined area of the brain with the use of stereotactic neurosurgery. In the last few years new DBS electrodes and systems have been developed with possibilities for using more parameters for control of the stimulation volume. In this thesis, simulations using the finite element method (FEM) have been developed and used for investigation of the electric field (EF) extension around different types of DBS lead designs (symmetric, steering) and stimulation modes (voltage, current). The electrode surrounding was represented either with a homogeneous model or a patient-specific model based on individual preoperative magnetic resonance imaging (MRI). The EF was visualized and compared for different lead designs and operating modes. In Paper I, the EF was quantitatively investigated around two lead designs (3389 and 6148) simulated to operate in voltage and current mode under acute and chronic time points following implantation.Simulations showed a major impact on the EF extension between postoperative time points which may explain the clinical decisions to change the stimulation amplitude weeks after implantation. In Paper II, the simulations were expanded to include two leads having steering function (6180, Surestim1) and patient-specific FEM simulations in the zona incerta. It was found that both the heterogeneity of the tissue and the operating mode, influence the EF distribution and that equivalent contact configurations of the leads result in similar EF. The steering mode presented larger volumes in current mode when using equivalent amplitudes. Simulations comparing DBS and intraoperative stimulation test using a microelectrode recording (MER) system (Paper III), showed that several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution and that the DBS EF volume can cover, but also extend to, other anatomical areas. Paper IV introduces a method for an objective exploitation of intraoperative stimulation test data in order to identify the optimal implant position in the thalamus of the chronic DBS lead. Patient-specific EF simulations were related to the anatomy with the help of brain atlases and the clinical effects which were quantified by accelerometers. The first results indicate that the good clinical effect in ET is due to several structures around the ventral intermediate nucleus of the thalamus.




World Congress on Medical Physics and Biomedical Engineering 2018


Book Description

This book presents the proceedings of the IUPESM World Congress on Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.




Brain and Human Body Modeling 2020


Book Description

The 41st Annual International Conference of the IEEE EMBS, took place between July 23 and 27, 2019, in Berlin, Germany. The focus was on "Biomedical engineering ranging from wellness to intensive care." This conference provided an opportunity for researchers from academia and industry to discuss a variety of topics relevant to EMBS and hosted the 4th Annual Invited Session on Computational Human Models. At this session, a bevy of research related to the development of human phantoms was presented, together with a substantial variety of practical applications explored through simulation.




Brain and Human Body Modeling


Book Description

This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.




Finite Element Method


Book Description

The Finite Element Method (FEM) has become an indispensable technology for the modelling and simulation of engineering systems. Written for engineers and students alike, the aim of the book is to provide the necessary theories and techniques of the FEM for readers to be able to use a commercial FEM package to solve primarily linear problems in mechanical and civil engineering with the main focus on structural mechanics and heat transfer.Fundamental theories are introduced in a straightforward way, and state-of-the-art techniques for designing and analyzing engineering systems, including microstructural systems are explained in detail. Case studies are used to demonstrate these theories, methods, techniques and practical applications, and numerous diagrams and tables are used throughout.The case studies and examples use the commercial software package ABAQUS, but the techniques explained are equally applicable for readers using other applications including NASTRAN, ANSYS, MARC, etc. - A practical and accessible guide to this complex, yet important subject - Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality




Atlas for Stereotaxy of the Human Brain


Book Description




World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany


Book Description

Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.




Niedermeyer's Electroencephalography


Book Description

The leading reference on electroencephalography since 1982, Niedermeyer's Electroencephalography is now in its thoroughly updated Sixth Edition. An international group of experts provides comprehensive coverage of the neurophysiologic and technical aspects of EEG, evoked potentials, and magnetoencephalography, as well as the clinical applications of these studies in neonates, infants, children, adults, and older adults. This edition's new lead editor, Donald Schomer, MD, has updated the technical information and added a major new chapter on artifacts. Other highlights include complete coverage of EEG in the intensive care unit and new chapters on integrating other recording devices with EEG; transcranial electrical and magnetic stimulation; EEG/TMS in evaluation of cognitive and mood disorders; and sleep in premature infants, children and adolescents, and the elderly. A companion website includes fully searchable text and image bank.




World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada


Book Description

This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.




Patient-Specific Modeling in Tomorrow's Medicine


Book Description

This book reviews the frontier of research and clinical applications of Patient Specific Modeling, and provides a state-of-the-art update as well as perspectives on future directions in this exciting field. The book is useful for medical physicists, biomedical engineers and other engineers who are interested in the science and technology aspects of Patient Specific Modeling, as well as for radiologists and other medical specialists who wish to be updated about the state of implementation.