Modeling Solar Radiation at the Earth's Surface


Book Description

Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design, e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research.




Estimating the Solar Irradiance of an Intermountain Region Using GOES (Geostationary Operational Environmental Satellite) Satellite Data: a Test of Two Statistical Models


Book Description

The performance of two statistical models that use satellite data to calculate the global solar radiation incident upon the earth's surface are assessed. The estimates are determined for a mid latitude ten station network and represent a variety of sky cover conditions. Evaluations of the models for different sky conditions reveal the need for revised regression coefficients for the Hay and Hanson (1978) model and the Tarpley (1979) model. The Hay and Hanson (1978) model was shown to perform better for partly cloudy and overcast sky conditions while the Tarpley (1979) model performed better under clear skies. On a hourly and daily time scale, the Hay and Hanson (1978) model proved to be the better performer.




Solar Radiation, Modelling and Remote Sensing


Book Description

Accurate solar radiation knowledge and its characterization on the Earth’s surface are of high interest in many aspects of environmental and engineering sciences. Modeling of solar irradiance from satellite imagery has become the most widely used method for retrieving solar irradiance information under total sky conditions, particularly in the solar energy community. Solar radiation modeling, forecasting, and characterization continue to be broad areas of study, research, and development in the scientific community. This Special Issue contains a small sample of the current activities in this field. Both the environmental and climatology community, as the solar energy world, share a great interest in improving modeling tools and capabilities for obtaining more reliable and accurate knowledge of solar irradiance components worldwide. The work presented in this Special Issue also remarks on the significant role that remote sensing technologies play in retrieving and forecasting solar radiation information.




An Introduction to Atmospheric Radiation


Book Description

Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.










Global LAnd Surface Satellite (GLASS) Products


Book Description

This book describes the algorithms, validation and preliminary analysis of the Global LAnd Surface Satellite (GLASS) products, a long-term, high-quality dataset that is now freely available worldwide to government organizations and agencies, scientific research institutions, students and members of the general public. The GLASS products include leaf area index, broadband albedo, broadband emissivity, downward shortwave radiation and photosynthetically active radiation. The first three GLASS products cover 1981 to 2012 with 1km and 5km spatial resolutions and 8-day temporal resolution, and the last two GLASS products span 2008 to 2010 with 3-hour temporal resolution and 5km spatial resolution. These GLASS products are unique. The first three are spatially continuous and cover the longest period of time among all current similar satellite products. The other two products are the highest spatial-resolution global radiation products from satellite observations that are currently available. These products can be downloaded from Beijing Normal University at http://glass-product.bnu.edu.cn/ and the University of Maryland Global Land Cover Facility at http://www.glcf.umd.edu/ The GLASS products are the outcome of a key research project entitled “Generation & Applications of Global Products of Essential Land Variables”, supported by funding from the High-Tech Research and Development Program of China and involving dozens of institutions and nearly one hundred scientists and researchers. Following an introduction, the book contains five chapters corresponding to these five GLASS products: background, algorithm, quality control and validation, preliminary analysis and applications. It discusses the long-term environmental changes detected from the GLASS products and other data sources at both global and local scales and also provides detailed analysis of regional hotspots where environmental changes are mainly associated with climate change, drought, land-atmosphere interactions, and human activities. The book is based primarily on a set of published journal papers about these five GLASS products and includes updated information. Since these products have now begun to be widely used, this book is an essential reference document. It is also a very helpful resource to anyone interested in satellite remote sensing and its applications.




Radiative Forcing of Climate Change


Book Description

Changes in climate are driven by natural and human-induced perturbations of the Earth's energy balance. These climate drivers or "forcings" include variations in greenhouse gases, aerosols, land use, and the amount of energy Earth receives from the Sun. Although climate throughout Earth's history has varied from "snowball" conditions with global ice cover to "hothouse" conditions when glaciers all but disappeared, the climate over the past 10,000 years has been remarkably stable and favorable to human civilization. Increasing evidence points to a large human impact on global climate over the past century. The report reviews current knowledge of climate forcings and recommends critical research needed to improve understanding. Whereas emphasis to date has been on how these climate forcings affect global mean temperature, the report finds that regional variation and climate impacts other than temperature deserve increased attention.




Solar Radiation


Book Description

Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation measurements. It also examines the accuracy of solar radiation modeling and measurements. The majority of the book describes the most popular simple models for estimating broadband and spectral solar resources available to flat plate, concentrating, photovoltaic, solar thermal, and daylighting engineering designs. Sufficient detail is provided for readers to implement the models in assorted development environments. Covering the nuts and bolts of practical solar radiation modeling applications, this book helps readers translate solar radiation data into viable, real-world renewable energy applications. It answers many how-to questions relating to solar energy conversion systems, solar daylighting, energy efficiency of buildings, and other solar radiation applications.