Modern Approaches to Discrete Curvature


Book Description

This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.




Modern Differential Geometry of Curves and Surfaces with Mathematica


Book Description

Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.




Discrete Geometry and Mathematical Morphology


Book Description

This book constitutes the proceedings of the Second IAPR International Conference on Discrete Geometry and Mathematical Morphology, DGMM 2022, which was held during October 24-27, 2022, in Strasbourg, France. The 33 papers included in this volume were carefully reviewed and selected from 45 submissions. They were organized in topical sections as follows: discrete and combinatorial topology; discrete tomography and inverse problems; multivariate and PDE-based mathematical morphology, morphological filtering; hierarchical and Graph-Based Models, Analysis and Segmentation; discrete geometry - models, transforms, and visualization; learning based morphology to Mathematical Morphology; and distance transform. The book also contains 3 invited keynote papers.







Discrete Geometry and Mathematical Morphology


Book Description

This book constitutes the proceedings of the First IAPR International Conference on Discrete Geometry and Mathematical Morphology, DGMM 2021, which was held during May 24-27, 2021, in Uppsala, Sweden. The conference was created by joining the International Conference on Discrete Geometry for computer Imagery, DGCI, with the International Symposium on Mathematical Morphology, ISMM. The 36 papers included in this volume were carefully reviewed and selected from 59 submissions. They were organized in topical sections as follows: applications in image processing, computer vision, and pattern recognition; discrete and combinatorial topology; discrete geometry - models, transforms, visualization; discrete tomography and inverse problems; hierarchical and graph-based models, analysis and segmentation; learning-based approaches to mathematical morphology; multivariate and PDE-based mathematical morphology, morphological filtering. The book also contains 3 invited keynote papers.




Minimal Surfaces: Integrable Systems and Visualisation


Book Description

This book collects original peer-reviewed contributions to the conferences organised by the international research network “Minimal surfaces: Integrable Systems and Visualization” financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.




Neural Information Processing


Book Description

The three-volume set of LNCS 12532, 12533, and 12534 constitutes the proceedings of the 27th International Conference on Neural Information Processing, ICONIP 2020, held in Bangkok, Thailand, in November 2020. Due to COVID-19 pandemic the conference was held virtually. The 187 full papers presented were carefully reviewed and selected from 618 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The second volume, LNCS 12533, is organized in topical sections on computational intelligence; machine learning; robotics and control.




Higher-Order Systems


Book Description

The book discusses the potential of higher-order interactions to model real-world relational systems. Over the last decade, networks have emerged as the paradigmatic framework to model complex systems. Yet, as simple collections of nodes and links, they are intrinsically limited to pairwise interactions, limiting our ability to describe, understand, and predict complex phenomena which arise from higher-order interactions. Here we introduce the new modeling framework of higher-order systems, where hypergraphs and simplicial complexes are used to describe complex patterns of interactions among any number of agents. This book is intended both as a first introduction and an overview of the state of the art of this rapidly emerging field, serving as a reference for network scientists interested in better modeling the interconnected world we live in.




Novel Mathematics Inspired by Industrial Challenges


Book Description

This contributed volume convenes a rich selection of works with a focus on innovative mathematical methods with applications in real-world, industrial problems. Studies included in this book are all motivated by a relevant industrial challenge, and demonstrate that mathematics for industry can be extremely rewarding, leading to new mathematical methods and sometimes even to entirely new fields within mathematics. The book is organized into two parts: Computational Sciences and Engineering, and Data Analysis and Finance. In every chapter, readers will find a brief description of why such work fits into this volume; an explanation on which industrial challenges have been instrumental for their inspiration; and which methods have been developed as a result. All these contribute to a greater unity of the text, benefiting not only practitioners and professionals seeking information on novel techniques but also graduate students in applied mathematics, engineering, and related fields.




Mathematical Principles of Topological and Geometric Data Analysis


Book Description

This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, operator theory and network analysis, it goes on to describe and analyze some of the most important machine learning techniques for dimension reduction, including the different types of manifold learning and kernel methods. It also develops a new notion of curvature of generalized metric spaces, based on the notion of hyperconvexity, which can be used for the topological representation of geometric information. In recent years there has been a fascinating development: concepts and methods originally created in the context of research in pure mathematics, and in particular in geometry, have become powerful tools in machine learning for the analysis of data. The underlying reason for this is that data are typically equipped with some kind of notion of distance, quantifying the differences between data points. Of course, to be successfully applied, the geometric tools usually need to be redefined, generalized, or extended appropriately. Primarily aimed at mathematicians seeking an overview of the geometric concepts and methods that are useful for data analysis, the book will also be of interest to researchers in machine learning and data analysis who want to see a systematic mathematical foundation of the methods that they use.