Modern Aspects of Diffusion-Controlled Reactions


Book Description

This monograph deals with the effects of reactant spatial correlations arising in the course of basic bimolecular reactions describing defect recombination, energy transfer and exciton annihilation in condensed matter. These effects lead to the kinetics considered abnormal from the standard chemical kinetics point of view. Numerous bimolecular reaction regimes and conditions are analysed in detail. Special attention is paid to the development and numerous applications of a novel, many-point density (MPD) formalism, which is based on Kirkwood's superposition approximation used for decoupling three-particle correlation functions.The book demonstrates that incorporation of the reaction-induced spatial correlations of similar reactants (e.g., vacancy-vacancy) leads to the development of an essentially non-Poisson spectrum of reactant density fluctuations. This can completely change the kinetics at longer times since it no longer obeys the law of mass action. The language of the correlation lengths and critical exponents similar to physics of critical phenomena is used instead. A relation between MPD theory and synergistics is discussed. The validity of the theorem giving a critical complexity for the two-step reactions exhibiting self-organization phenomena is questioned. Theoretical results are illustrated by numerous experimental data.




Modern Aspects of Electrochemistry, Number 38


Book Description

This volume comprises six chapters on aspects of fundamental and applied electrochemical science that will be of interest both to researchers in the basic areas of the subject and to those involved in aspects of electrochemical technologies. Chapter 1 is the first part of a 2-part, major contribution by Joachim Maier on Solid State Electrochemistry: Thermodynamics and Kinetics of Charge Carriers in Solids. Part 2 will follow in volume 39 to be published in year 2005. This contribution reviews modern concepts of the equilibria involving charge carriers in solids in terms of concentrations of defects in solids and at grain-boundaries, including doping effects. Complementarily, kinetics of charge transfer and ion transfer are treated in some detail in relation to conductance, kinetics of surface processes and electrode-kinetics involving solid-state processes. This chapter will be of major interest to electrochemists and physicists in the semiconductor field and that involving ionic solids. In the second chapter, Appleby presents a detailed discussion and review in modern terms of a central aspect of electrochemistry: Electron Transfer Reactions With and Without Ion Transfer. Electron transfer is the most fundamental aspect of most processes at electrode interfaces and is also involved intimately with the homogeneous chemistry of redox reactions in solutions.




Kinetics of Multistep Reactions


Book Description

This book addresses primarily the engineer in industrial process development, the research chemist in academia and industry, and the graduate student intending to become a reaction engineer. In industry, competitive pressures put a premium on scale-up by large factors to cut development time. To be safe, such development should be based on "fundamental" kinetics that reflect the elementary steps of which the reaction consists. The book forges fundamental kinetics into a practical tool by presenting new, effective methods for elucidation of mechanisms and reduction of complexity without unacceptable sacrifice in accuracy: fewer equations (lesser computational load), fewer coefficients (fewer experiment to determine them). For network elucidation, new rules relating network configurations to observable kinetic behaviour allow incorrect networks to be ruled out by whole classes instead of one by one. For modelling, general equations and algorithms are given from which equations for specific networks can be recovered by simple substitutions. The procedures are illustrated with examples of industrial reactions including, among others, paraffin oxidation, ethoxylation, hydroformylation, hydrocyanation, shape-selective catalysis, ethane pyrolysis, styrene polymerization, and ethene oligomerization. Many of the rate equations have not been published before. The expanded edition of the 2001 title, Kinetics of Homogeneous Multistep Reactions includes new chapters on heterogeneous catalysis and periodic and chaotic re-actions; new sections on adsorption, statistical methods, and lumping; and other new detail. - Contains new chapters on heterogeneous catalysis, oscillations and chaos - Includes new sections on statistical methods, lumping adsorption and software and databases - Provides a better understanding of complex reaction mechanisms




Oxoacidity: Reactions of Oxo-compounds in Ionic Solvents


Book Description

The generally accepted definitions of acids and bases together with the generalized definition for the solvent system introduced by the author for the description of both molecular and ionic solvents are discussed. The oxobasicity index introduced as a measure of relative oxoacidic properties of ionic melts (pIL) and methods of its determination are presented. Moreover, the oxoacidity scales of ionic melts based on alkali metal halides at different temperatures are constructed. The sequential addition method (SAM), proposed by the author to investigate the effect of oxide particle size on oxide solubilities is presented. This book is meant for specialists developing theoretical and applied aspects of molten salt chemistry, acid-base theories and solubility phenomena. It will also be useful for those chemists who wish to extend their knowledge of physical and solution chemistry. - First book devoted to oxoacids and oxobases - Aimed at specialists developing theoretical and applied aspects of molten salt chemistry, acid-base theories and solubility phenomena - The perfect handbook for beginners looking for preliminary knowledge about methods of investigation




Modeling of Chemical Reactions


Book Description

Modeling of Chemical Reactions covers detailed chemical kinetics models for chemical reactions. Including a comprehensive treatment of pressure dependent reactions, which are frequently not incorporated into detailed chemical kinetic models, and the use of modern computational quantum chemistry, which has recently become an extraordinarily useful component of the reaction kinetics toolkit. It is intended both for those who need to model complex chemical reaction processes but have little background in the area, and those who are already have experience and would benefit from having a wide range of useful material gathered in one volume. The range of subject matter is wider than that found in many previous treatments of this subject. The technical level of the material is also quite wide, so that non-experts can gain a grasp of fundamentals, and experts also can find the book useful. - A solid introduction to kinetics - Material on computational quantum chemistry, an important new area for kinetics - Contains a chapter on construction of mechanisms, an approach only found in this book




Kinetics of Homogeneous Multistep Reactions


Book Description

This book addresses primarily the chemist and engineer in industrial research and process development, where competitive pressures put a premium on scale-up by large factors to cut development time. To be safe, such scale-up should be based on "fundamental" kinetics, that is, mathematics that reflect the elementary steps of which the reactions consist. The book forges fundamental kinetics into a practical tool by presenting new effective methods for elucidation of mechanisms and reduction of mathematical complexity without unacceptable sacrifice in accuracy.




Comprehensive Chemical Kinetics


Book Description

Unimolecular reactions are in principle the simplest chemical reactions, because they only involve one molecule. The basic mechanism, in which the competition between the chemical reaction step and a collisional deactivation leads to a pressure-dependent coefficient, has been understood for a long time. However, this is a rapidly developing field, and many new and important discoveries have been made in the past decade.This First Part Part of Two CCK Volumes dealing with Unimolecular Rections, deals with the Reaction Step. The first chapter is an introduction to the whole project, aiming to cover the material necessary to understand the content of the detailed chapters, as well as the history of the development of the area. Chapter 2 is a review of the modern view of the statistical theories, as embodied in the various forms of RRKM theory. Chapter 3 deals with the fully quantum mechanical view of reactive states as resonances.. Presents considerable advances in the field made during the last decade.. Treats both the statistical as well as the fully quantum mechanical view.




Photokinetics


Book Description

Many books cover the determination of rate constants under different experimental conditions and different chemical composition of the reaction mixture in their formal treatment of thermal kinetics. However, most textbooks are limited to simple mechanisms. In contrast, analogous treatment of photochemical reactions is limited to the publication of special reactions and investigations. Therefore, this book is aimed at providing an overall description of formal photokinetics covering a wider scope than the usual books on kinetics.This volume attempts to provide a concise treatment of both thermo- and photochemical reactions by means of generalised differential equations, their set-up in matrix notation, and their solution by a formalism using numerical integration. At a first glance this approach might be surprising. However, apart from the argument that the didactics of thermal reactions are easier to handle than those of kinetics, the book provides additional reasons in support of this approach. Therefore, the formalism derived allows the evaluation of photochemical reactions, which are superimposed thermal reactions taking into account that the amount of light absorbed varies during the reaction. Because of this, any approximation, either by using total absorbance or negligible absorbance, will cause considerable errors even for simple reactions. The approach chosen to transform the axis of the radiation time into a new variable that includes the photokinetic factor proves that formal kinetics can be applied to thermal and photochemical reactions as well, and even allows the handling of solutions that cannot be homogenised or solid samples in which the concentration varies locally. By using this approach to introduce partial photochemical quantum yields even complex mechanisms can be determined quantitatively.A large number of examples for different mechanisms and an introduction to many spectroscopic and chromatographic methods suitable for photokinetic analyses are provided to enable the reader to carry out a step-by-step evaluation of his own measurements. To reduce the number of formula in some chapters an appendix has been included which contains a detailed description of the calculus of some essential examples. For the convenience of the reader the following has been included:• A large number of examples describing the use of formula• A detailed description of the procedure for applying photokinetics to complex consecutive photoreactions• An Internet address where the reader can find a tutorial for this procedure:http://www.barolo.ipc.uni-tuebingen.de/tele/photokin/• A simple macro to help in programming his own evaluation procedure.




Low-temperature Combustion and Autoignition


Book Description

Combustion has played a central role in the development of our civilization which it maintains today as its predominant source of energy. The aim of this book is to provide an understanding of both fundamental and applied aspects of low-temperature combustion chemistry and autoignition. The topic is rooted in classical observational science and has grown, through an increasing understanding of the linkage of the phenomenology to coupled chemical reactions, to quite profound advances in the chemical kinetics of both complex and elementary reactions. The driving force has been both the intrinsic interest of an old and intriguing phenomenon and the centrality of its applications to our economic prosperity. The volume provides a coherent view of the subject while, at the same time, each chapter is self-contained.




Applications of Kinetic Modelling


Book Description

Volume 37 is concerned with the use and role of modelling in chemical kinetics and seeks to show the interplay of theory or simulation with experiment in a diversity of physico-chemical areas in which kinetics measurements provide significant physical insight. Areas of application covered within the volume include electro- and interfacial chemistry, physiology, biochemistry, solid state chemistry and chemical engineering. A leading contributor to this general area has been Professor W. John Albery, FRS, to whom the contributors and editors dedicate this book.