Modern Cellular Automata


Book Description

It is with great pleasure that I present this fourth vol ume in the series "Advanced Applications in Pattern Recognition." It would be difficult to find two authors better versed in the design and application of parallel image processing systems, due to both their own many years of pioneering in the field and their encyclopedic knowledge of what is going on in uni versity and industrial laboratories around the world. The monograph is unique in its parallel presentation of orthogonal and hexagonal dissections, and the wealth of graphic illustration of algorithmic procedures for processing and analyz ing images in the various known implementations of parallel im age-processing architectures. This volume should find a place on the bookshelf of every practitioner of pattern recognition, image processing, and compu ter graphics. Morton Nadler General Editor vii PREFACE This book endeavors to introduce the reader to the subject of cellular logic and cellular automata and is devoted particu larly to those parts dealing with the manipulation of pictorial data. The study of cellular automata owes much to the pioneer ing work of John von Neumann during the 1950s. Von Neumann was interested in general problems in the behavior of computing structures and was immensely impressed by the complexity and performance of the human brain, which he felt must point to wards successful designs for automatic computing machines.




Modern Cellular Automata


Book Description

It is with great pleasure that I present this fourth vol ume in the series "Advanced Applications in Pattern Recognition." It would be difficult to find two authors better versed in the design and application of parallel image processing systems, due to both their own many years of pioneering in the field and their encyclopedic knowledge of what is going on in uni versity and industrial laboratories around the world. The monograph is unique in its parallel presentation of orthogonal and hexagonal dissections, and the wealth of graphic illustration of algorithmic procedures for processing and analyz ing images in the various known implementations of parallel im age-processing architectures. This volume should find a place on the bookshelf of every practitioner of pattern recognition, image processing, and compu ter graphics. Morton Nadler General Editor vii PREFACE This book endeavors to introduce the reader to the subject of cellular logic and cellular automata and is devoted particu larly to those parts dealing with the manipulation of pictorial data. The study of cellular automata owes much to the pioneer ing work of John von Neumann during the 1950s. Von Neumann was interested in general problems in the behavior of computing structures and was immensely impressed by the complexity and performance of the human brain, which he felt must point to wards successful designs for automatic computing machines.




Additive Cellular Automata


Book Description

This book presents an extensive survey and report of related research on important developments in cellular automata (CA) theory. The authors introduce you to this theory in a comprehensive manner that will help you understand the basics of CA and be prepared for further research. They illustrate the matrix algebraic tools that characterize group CA and help develop its applications in the field of VLSI testing. The text examines schemes based on easily testable FSM, bit-error correcting code, byte error correcting code, and characterization of 2D cellular automata. In addition, it looks into CA-based universal pattern generation, data encryption, and synthesis of easily testable combinational logic. The book covers new characterizations of group CA behavior, CA-based tools for fault diagnosis, and a wide variety of applications to solve real-life problems.




Cellular Automata Machines


Book Description

Theory of Computation -- Computation by Abstracts Devices.




Cellular Automata And Complexity


Book Description

Are mathematical equations the best way to model nature? For many years it had been assumed that they were. But in the early 1980s, Stephen Wolfram made the radical proposal that one should instead build models that are based directly on simple computer programs. Wolfram made a detailed study of a class of such models known as cellular automata, and discovered a remarkable fact: that even when the underlying rules are very simple, the behaviour they produce can be highly complex, and can mimic many features of what we see in nature. And based on this result, Wolfram began a program of research to develop what he called A Science of Complexity."The results of Wolfram's work found many applications, from the so-called Wolfram Classification central to fields such as artificial life, to new ideas about cryptography and fluid dynamics. This book is a collection of Wolfram's original papers on cellular automata and complexity. Some of these papers are widely known in the scientific community others have never been published before. Together, the papers provide a highly readable account of what has become a major new field of science, with important implications for physics, biology, economics, computer science and many other areas.




The Cellular Automaton Interpretation of Quantum Mechanics


Book Description

This book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft. Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory. The author gives examples of models that are classical in essence, but can be analysed by the use of quantum techniques, and argues that even the Standard Model, together with gravitational interactions, might be viewed as a quantum mechanical approach to analysing a system that could be classical at its core. He shows how this approach, even though it is based on hidden variables, can be plausibly reconciled with Bell's theorem, and how the usual objections voiced against the idea of ‘superdeterminism' can be overcome, at least in principle. This framework elegantly explains - and automatically cures - the problems of the wave function collapse and the measurement problem. Even the existence of an “arrow of time" can perhaps be explained in a more elegant way than usual. As well as reviewing the author’s earlier work in the field, the book also contains many new observations and calculations. It provides stimulating reading for all physicists working on the foundations of quantum theory.




Quantum Dots and Quantum Cellular Automata


Book Description

This book investigates the electronic properties of QDs of non-linear optical, III-V, II-IV, n-GaP, n-Ge, Te, Graphite, PtSb2, zero gap, II-V, GaSb, stressed materials, Bi, IV-IV, Lead germanium telluride, Zinc and Cadmium diphosphides, Bi2Te3, Antimony, III-V,II-VI,IV-VI compounds, III-V,II-VI,IV-VI, HgTe/CdTe and strained layer Quantum Dot Superlattices (QDSL) with graded interfaces and the QD effective mass superlattices of the aforementioned materials together with their heavily doped counter parts on the basis of newly formulated electron dispersion laws. The book considers the structures in which a layer of QD is inserted in the QW (Dots-in-Well) in the base and examines theoretically if there is improvement in the performance over the usual QW structure.




Models of Massive Parallelism


Book Description

Locality is a fundamental restriction in nature. On the other hand, adaptive complex systems, life in particular, exhibit a sense of permanence and time lessness amidst relentless constant changes in surrounding environments that make the global properties of the physical world the most important problems in understanding their nature and structure. Thus, much of the differential and integral Calculus deals with the problem of passing from local information (as expressed, for example, by a differential equation, or the contour of a region) to global features of a system's behavior (an equation of growth, or an area). Fundamental laws in the exact sciences seek to express the observable global behavior of physical objects through equations about local interaction of their components, on the assumption that the continuum is the most accurate model of physical reality. Paradoxically, much of modern physics calls for a fundamen tal discrete component in our understanding of the physical world. Useful computational models must be eventually constructed in hardware, and as such can only be based on local interaction of simple processing elements.




Designing Beauty: The Art of Cellular Automata


Book Description

This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to take on cellular automata as a tool of creativity and it persuades scientists to convert their research results into the works of art. The book is lavishly illustrated with visually attractive examples, presented in a lively and easily accessible manner.




A New Kind of Science


Book Description

This work presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.