Modern Geometry— Methods and Applications


Book Description

Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.




Bäcklund and Darboux Transformations


Book Description

This book explores the deep and fascinating connections that exist between a ubiquitous class of physically important waves known as solitons and the theory of transformations of a privileged class of surfaces as they were studied by eminent geometers of the nineteenth century. Thus, nonlinear equations governing soliton propagation and also mathematical descriptions of their remarkable interaction properties are shown to arise naturally out of the classical differential geometry of surfaces and what are termed Bäcklund-Darboux transformations.This text, the first of its kind, is written in a straightforward manner and is punctuated by exercises to test the understanding of the reader. It is suitable for use in higher undergraduate or graduate level courses directed at applied mathematicians or mathematical physics.




Differential Geometry


Book Description

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.




The Geometry of Physics


Book Description

This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.




Mostly Surfaces


Book Description

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis. --from publisher description.




Classical Algebraic Geometry


Book Description

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.




A Modern View of Geometry


Book Description

Elegant exposition of postulation geometry of planes offers rigorous, lucid treatment of coordination of affine and projective planes, set theory, propositional calculus, affine planes with Desargues and Pappus properties, more. 1961 edition.




Introduction to Möbius Differential Geometry


Book Description

This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere.




Modern Geometry


Book Description




Modern Geometry - Methods and Applications


Book Description

manifolds, transformation groups, and Lie algebras, as well as the basic concepts of visual topology. It was also agreed that the course should be given in as simple and concrete a language as possible, and that wherever practic able the terminology should be that used by physicists. Thus it was along these lines that the archetypal course was taught. It was given more permanent form as duplicated lecture notes published under the auspices of Moscow State University as: Differential Geometry, Parts I and II, by S. P. Novikov, Division of Mechanics, Moscow State University, 1972. Subsequently various parts of the course were altered, and new topics added. This supplementary material was published (also in duplicated form) as Differential Geometry, Part III, by S. P. Novikov and A. T. Fomenko, Division of Mechanics, Moscow State University, 1974. The present book is the outcome of a reworking, re-ordering, and ex tensive elaboration of the above-mentioned lecture notes. It is the authors' view that it will serve as a basic text from which the essentials for a course in modern geometry may be easily extracted. To S. P. Novikov are due the original conception and the overall plan of the book. The work of organizing the material contained in the duplicated lecture notes in accordance with this plan was carried out by B. A. Dubrovin.