Modern Inertial Sensors and Systems


Book Description

Modern inertial sensors and systems cover more than five decades of continuous research and development involving various branches of science and engineering. Various technologies have emerged in an evolutionary manner surpassing the earlier ones in performance and reliability. The subject is still growing with proliferation in newer cost effec-tive applications, while its wider usage in aerospace systems continues. This book exposes the readers to the subject of inertial navigation, the inertial sensors and inertial systems in a unified manner while emphasizing the growth areas in emerging technologies such as micro-electromechanical inertial sensors, satellite navigation, satellite navigation integrated inertial navigation, hemispherical resonator gyro, vibrating beam accelerometer, interferometric fibre optic gyro, inertial sensor signal processing, redundant inertial systems and the quite recent emergence of cold atom interferometer based inertial sensors. The contents are imaginatively designed that will of interest to a wide spectrum of readers. The book has been written with utmost lucidity and clarity and explanations provided with a large number of illustrative figures. Besides being an ideal introduction to the principles of inertial sensors and systems for undergraduate and postgraduate students of aerospace engineering, the topics dealt with will also be of benefit to practising engineers and can assist the researchers to locate excellent references for research work. The authors have had three decades of design and application research experience in premier research institutions and have made use of their experience in giving a user-friendly shape to the book.




Modern Inertial Technology


Book Description

A description of the inertial technology used for guidance, control, and navigation, discussing in detail the principles, operation, and design of sensors, gyroscopes, and accelerometers, as well as the advantages and disadvantages of particular systems. An engineer with long practical experience in the field, the author elucidates such recent developments as fibre-optic gyroscopes, solid-state accelerometers, and the global positioning system. This will be of interest to researchers and practising engineers involved in systems engineering, aeronautics, space research, and navigation on both land and sea.




Modern Inertial Technology


Book Description

Automatic navigation makes ocean-going and flying safer and less expensive: Safer because machines are tireless and always vigilant; inexpensive because it does not use human navigators who are, unavoidably, highly trained and thus expensive people. What is more, unmanned deep space travel would be impossible without automatic navigation. Navigation can be automated with the radio systems Loran, Omega, and the Global Positioning System (GPS) of earth satellites, but its most versatile form is completely self-contained and is called inertial navigation. It uses gyroscopes and accelerometers (inertial sensors) to measure the state of motion of the vehicle by noting changes in that state caused by accelerations. By knowing the vehicle's starting position and noting the changes in its direction and speed, one can keep track of the vehicle's present position. Mankind first used this technology in World War n, in guided weapons where cost was unimportant; only 20-30 years later did it become cheap enough to be used commercially. The electronics revolution, in which vacuum tubes were replaced by integrated circuits, has dramatically altered the field of inertial navigation. Early inertial systems used complex mechanical gimbal structures and mechanical gyroscopes with spinning wheels. The gimbals allowed the gyroscopes to stabilize a mass (called a "platform") so that it remained in a fixed attitude relative to a chosen coordinate frame, even as the vehicle turned around any or all of its three major axes.




FUNDAMENTALS OF NAVIGATION AND INERTIAL SENSORS


Book Description

Navigation fundamentally provides information on position, velocity and direction which are needed for travel in ocean, land, air and in space. The myriad forms of navigation developed so far are collectively called modern navigation. This recent text discusses new promising developments that will assist the students when they enter their future professional career. It is the outcome of authors’ wide experience in teaching, research and development in the field of navigation and inertial sensors. The content of the book is designed to impart adequate knowledge to the students in the area of navigation and related sensors. The text discusses inertial navigation, inertial sensors, MEMS based inertial sensors, satellite navigation, integrated inertial navigation, signal processing of inertial sensors and their applications. The chapters introduce all the topics in an easy to understand manner so that an appreciative understanding of the text matter can be made without resorting to equations and mathematics. Considerable references have been provided to enable both the students and the professors to dwell and learn more on the topics of their interest. This textbook is primarily intended to meet the academic needs of undergraduate and postgraduate students of aerospace engineering and avionics.




Strapdown Inertial Navigation Technology


Book Description

Inertial navigation is widely used for the guidance of aircraft, missiles ships and land vehicles, as well as in a number of novel applications such as surveying underground pipelines in drilling operations. This book discusses the physical principles of inertial navigation, the associated growth of errors and their compensation. It draws current technological developments, provides an indication of potential future trends and covers a broad range of applications. New chapters on MEMS (microelectromechanical systems) technology and inertial system applications are included.




Using Inertial Sensors for Position and Orientation Estimation


Book Description

Microelectromechanical system (MEMS) inertial sensors have become ubiquitous in modern society. Built into mobile telephones, gaming consoles, virtual reality headsets, we use such sensors on a daily basis. They also have applications in medical therapy devices, motion-capture filming, traffic monitoring systems, and drones. While providing accurate measurements over short time scales, this diminishes over longer periods. To date, this problem has been resolved by combining them with additional sensors and models. This adds both expense and size to the devices. This tutorial focuses on the signal processing aspects of position and orientation estimation using inertial sensors. It discusses different modelling choices and a selected number of important algorithms that engineers can use to select the best options for their designs. The algorithms include optimization-based smoothing and filtering as well as computationally cheaper extended Kalman filter and complementary filter implementations. Engineers, researchers, and students deploying MEMS inertial sensors will find that this tutorial is an essential monograph on how to optimize their designs.




Introduction to Modern Navigation Systems


Book Description

The emerging technology of very inexpensive inertial sensors is available for navigation as never before. The book lays the analytical foundation for understanding and implementing the navigation equations. It starts by demystifying the central theme of the frame rotation using such algorithms as the quaternions, the rotation vector and the Euler angles. After developing navigation equations, the book introduces the computational issues and discusses the physical aspects that are tied to implementing these equations. The book then explains alignment techniques.Introduction to Modern Navigation Systems offers an efficient algorithm for polar navigation. It also shows how to enhance the performance of the inertial system when aided by the Global Positioning System. It is an appropriate textbook for senior undergraduate and graduate students in aeronautical and electrical engineering. It could also be used as a reference book for practitioners in the field.




Introduction To Modern Navigation Systems


Book Description

The emerging technology of very inexpensive inertial sensors is available for navigation as never before. The book lays the analytical foundation for understanding and implementing the navigation equations. It starts by demystifying the central theme of the frame rotation using such algorithms as the quaternions, the rotation vector and the Euler angles. After developing navigation equations, the book introduces the computational issues and discusses the physical aspects that are tied to implementing these equations. The book then explains alignment techniques.Introduction to Modern Navigation Systems offers an efficient algorithm for polar navigation. It also shows how to enhance the performance of the inertial system when aided by the Global Positioning System. It is an appropriate textbook for senior undergraduate and graduate students in aeronautical and electrical engineering. It could also be used as a reference book for practitioners in the field.




2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)


Book Description

The 2019 IEEE Inertial Sensors has an ambition to establish itself as the premier forum for reporting the latest research, development, and commercialization results in modern Inertial Sensors and Systems Talks on materials and micro fabrication processes, innovative designs, and new physical principals will be held, and there will be a growing number of new applications and business opportunities




Intelligent Information Processing for Inertial-Based Navigation Systems


Book Description

This book introduces typical inertial devices and inertial-based integrated navigation systems, gyro noise suppression, gyro temperature drift error modeling compensation, inertial-based integrated navigation systems under discontinuous observation conditions, and inertial-based brain integrated navigation systems. Integrated navigation is the result of the development of modern navigation theory and technology. The inertial navigation system has the advantages of strong autonomy, high short-term accuracy, all-day time, all weather, and so on. And it has been applied in most integrated navigation systems. Among them, the information processing of inertial-based integrated navigation system is the core technology. Due to the effect of the device mechanism and working environment, there are errors in the output information of the inertial-based integrated navigation system, including gyroscope noise, temperature drift, and discontinuous observations, which will seriously reduce the accuracy and robustness of the system. And the book helps readers to solve these problems. The intelligent information processing technology involved is equipped with simulation verification, which can be used as a reference for undergraduate, graduate, and Ph.D. students, and also scientific researchers or engineers engaged in navigation-related specialties.