Modern Mathematics in the Light of the Fields Medals


Book Description

This small book demonstrates the evolution of certain areas of modern mathematics by examining the work of past winners of the Fields Medal, the "Nobel Prize" of mathematics. Foreword by Freeman Dyson.




Modern Mathematics in the Light of the Fields Medals


Book Description

This small book demonstrates the evolution of certain areas of modern mathematics by examining the work of past winners of the Fields Medal, the "Nobel Prize" of mathematics. Foreword by Freeman Dyson.




Fields Medallists' Lectures


Book Description

Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics - and an age limit of 40 has become an accepted tradition. Mathematics has in the main been interpreted as pure mathematics, and this is not so unreasonable since major contributions in some applied areas can be (and have been) recognized with Nobel Prizes. The restriction to 40 years is of marginal significance, since most mathematicians have made their mark long before this age.A list of Fields Medallists and their contributions provides a bird's eye view of mathematics over the past 60 years. It highlights the areas in which, at various times, greatest progress has been made. This volume does not pretend to be comprehensive, nor is it a historical document. On the other hand, it presents contributions from 22 Fields Medallists and so provides a highly interesting and varied picture.The contributions themselves represent the choice of the individual Medallists. In some cases the articles relate directly to the work for which the Fields Medals were awarded. In other cases new articles have been produced which relate to more current interests of the Medallists. This indicates that while Fields Medallists must be under 40 at the time of the award, their mathematical development goes well past this age. In fact the age limit of 40 was chosen so that young mathematicians would be encouraged in their future work.The Fields Medallists' Lectures is now available on CD-ROM. Sections can be accessed at the touch of a button, and similar topics grouped together using advanced keyword searches.




The Mathematical Century


Book Description

The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century, Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details. Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous "23 problems" outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics. This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.




Historical Encyclopedia of Natural and Mathematical Sciences


Book Description

This 5,800-page encyclopedia surveys 100 generations of great thinkers, offering more than 2,000 detailed biographies of scientists, engineers, explorers and inventors who left their mark on the history of science and technology. This six-volume masterwork also includes 380 articles summarizing the time-line of ideas in the leading fields of science, technology, mathematics and philosophy.




Turbulent Times in Mathematics


Book Description

Despite the renown of the Fields Medals, J.C. Fields has been until now a rather obscure figure, and recovering details about his professional activities and personal life was not at all a simple task. This work is a triumph of persistence with far-flung archival and documentary sources, and provides a rich non-mathematical portrait of the man in all aspects of his life and career. Highly readable and replete with period detail, the book sheds useful light on the mathematical and scientific world of Fields' time, and is sure to remain the definitive biographical study. --Tom Archibald, Simon Fraser University, Burnaby, BC, Canada Drawing on a wide array of archival sources, Riehm and Hoffman provide a vivid account of Fields' life and his part in the founding of the highest award in mathematics. Filled with intriguing detail--from a childhood on the shores of Lake Ontario, through the mathematics seminars of late 19th century Berlin, to the post-WW1 years of the fragmented international mathematical community--it is a richly textured story engagingly and sympathetically told. Read this book and you will understand why Fields never wanted the medal to bear his name and yet why, quite rightly, it does. --June Barrow-Green, Open University, Milton Keynes, United Kingdom One of the little-known effects of World War I was the collapse of international scientific cooperation. In mathematics, the discord continued after the war's end and after the Treaty of Versailles had been signed in 1919. Many distinguished scientists were involved in the war and its aftermath, and from their letters and papers, now almost a hundred years old, we learn of their anguished wartime views and their struggles afterwards either to prolong the schism in mathematics or to end it. J.C. Fields, the foremost Canadian mathematician of his time, was educated in Canada, the United States, and Germany, and championed an international spirit of cooperation to further the frontiers of mathematics. It was during the awkward post-war period that J.C. Fields established the Fields Medal, an international prize for outstanding research, which soon became the highest award in mathematics. J.C. Fields intended it to be an international medal, and a glance at the varying backgrounds of the fifty-two Fields medallists shows it to be so. Who was Fields? What carried him from Hamilton, Canada West, where he was born in 1863, into the middle of this turbulent era of international scientific politics? A modest mathematician, he was an unassuming man. This biography outlines Fields' life and times and the difficult circumstances in which he created the Fields Medal. It is the first such published study.




CRC Concise Encyclopedia of Mathematics


Book Description

Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d




Quantum Field Theory III: Gauge Theory


Book Description

In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).




Mathematical Journeys


Book Description

A colorful tour through the intriguing world of mathematics Take a grand tour of the best of modern math, its most elegant solutions, most clever discoveries, most mind-bending propositions, and most impressive personalities. Writing with a light touch while showing the real mathematics, author Peter Schumer introduces you to the history of mathematics, number theory, combinatorics, geometry, graph theory, and "recreational mathematics." Requiring only high school math and a healthy curiosity, Mathematical Journeys helps you explore all those aspects of math that mathematicians themselves find most delightful. You’ll discover brilliant, sometimes quirky and humorous tidbits like how to compute the digits of pi, the Josephus problem, mathematical amusements such as Nim and Wythoff’s game, pizza slicing, and clever twists on rolling dice.




The Oxford Handbook of the History of Mathematics


Book Description

This handbook explores the history of mathematics, addressing what mathematics has been and what it has meant to practise it. 36 self-contained chapters provide a fascinating overview of 5000 years of mathematics and its key cultures for academics in mathematics, historians of science, and general historians.