Modern Mechanobiology


Book Description

Modern mechanobiology converges both engineering and medicine to address personalized medicine. This book is built on the previously well-received edition, Hemodynamics and Mechanobiology of Endothelium. The central theme is "omic" approaches to mechanosignal transduction underlying tissue development, injury, and repair. A cadre of investigators has contributed to the chapters, enriching the interface between mechanobiology and precision medicine for personalized diagnosis and intervention. The book begins with the fundamental basis of vascular disease in response to hemodynamic shear stress and then details cardiovascular development and regeneration, valvular and cardiac morphogenesis, mechanosensitive microRNA and histone unfolding, computational fluid dynamics, and light-sheet imaging. This edition represents a paradigm shift from traditional biomechanics and signal transduction to transgenic models, including novel zebrafish and chick embryos, and targets a wider readership from academia to industry and government agencies in the field of mechanobiology.




Mechanobiology


Book Description

An emerging field at the interface of biology and engineering, mechanobiology explores the mechanisms by which cells sense and respond to mechanical signals—and holds great promise in one day unravelling the mysteries of cellular and extracellular matrix mechanics to cure a broad range of diseases. Mechanobiology: Exploitation for Medical Benefit presents a comprehensive overview of principles of mechanobiology, highlighting the extent to which biological tissues are exposed to the mechanical environment, demonstrating the importance of the mechanical environment in living systems, and critically reviewing the latest experimental procedures in this emerging field. Featuring contributions from several top experts in the field, chapters begin with an introduction to fundamental mechanobiological principles; and then proceed to explore the relationship of this extensive force in nature to tissues of musculoskeletal systems, heart and lung vasculature, the kidney glomerulus, and cutaneous tissues. Examples of some current experimental models are presented conveying relevant aspects of mechanobiology, highlighting emerging trends and promising avenues of research in the development of innovative therapies. Timely and important, Mechanobiology: Exploitation for Medical Benefit offers illuminating insights into an emerging field that has the potential to revolutionise our comprehension of appropriate cell biology and the future of biomedical research.




Mechanobiology


Book Description

The main aim of this book is to focus on research in the mechanobiology of cartilage and chondrocyte, and to promote the creation of new studies and collaborations in the osteo-articular field.




Introduction to Cell Mechanics and Mechanobiology


Book Description

Introduction to Cell Mechanics and Mechanobiology is designed for a one-semester course in the mechanics of the cell offered to advanced undergraduate and graduate students in biomedical engineering, bioengineering, and mechanical engineering. It teaches a quantitative understanding of the way cells detect, modify, and respond to the physical prope




Mechanobiology Handbook


Book Description

Mechanobiology-the study of the effects of mechanical environments on the biological processes of cells-has evolved from traditional biomechanics via the incorporation of strong elements of molecular and cell biology. Currently, a broad range of organ systems are being studied by surgeons, physicians, basic scientists, and engineers. These mechanob




Mechanobiology Handbook, Second Edition


Book Description

Mechanobiology—the study of the effects of mechanics on biological events—has evolved to answer numerous research questions. Mechanobiology Handbook 2nd Edition is a reference book for engineers, scientists, and clinicians who are interested in mechanobiology and a textbook for senior undergraduate to graduate level students of this growing field. Readers will gain a comprehensive review of recent research findings as well as elementary chapters on solid mechanics, fluid mechanics, and molecular analysis techniques. The new edition presents, in addition to the chapters of the first edition, homework problem sets that are available online and reviews of research in uncovered areas. Moreover, the new edition includes chapters on statistical analysis, design of experiments and optical imaging. The editors of this book are researchers and educators in mechanobiology. They realized a need for a single volume to assist course instructors as a guide for didactic teaching of mechanobiology to a diverse student body. A mechanobiology course is frequently made up of both undergraduate and graduate students pursuing degrees in engineering, biology, or integrated engineering and biology. Their goal was to present both the elementary and cutting-edge aspects of mechanobiology in a manner that is accessible to students from many different academic levels and from various disciplinary backgrounds. Moreover, it is their hope that the readers of Mechanobiology Handbook 2nd Edition will find study questions at the end of each chapter useful for long-term learning and further discussion. Comprehensive collection of reviews of recent research Introductory materials in mechanics, biology, and statistics Discussion of pioneering and emerging mechanobiology concepts Presentation of cutting-edge mechanobiology research findings across various fields and organ systems End of chapter study questions, available online Considering the complexity of the mechanics and the biology of the human body, most of the world of mechanobiology remains to be studied. Since the field is still developing, the Mechanobiology Handbook raises many different viewpoints and approaches with the intention of stimulating further research endeavours.




Encyclopedia of Bone Biology


Book Description

Encyclopedia of Bone Biology, Three Volume Set covers hot topics from within the rapidly expanding field of bone biology and skeletal research, enabling a complete understanding of both bone physiology and its relation to other organs and pathophysiology. This encyclopedia will serve as a vital resource for those involved in bone research, research in other fields that cross link with bone, such as metabolism and immunology, and physicians who treat bone diseases. Each article provides a comprehensive overview of the selected topic to inform a broad spectrum of readers from advanced undergraduate students to research professionals. Chapters also explore the latest advances and hot topics that have emerged in recent years, including the Hematopoietic Niche and Nuclear Receptors. In the electronic edition, each chapter will include hyperlinked references and further readings as well as cross-references to related articles. Incorporates perspectives from experts working within the domains of biomedicine, including physiology, pathobiology, pharmacology, immunology, endocrinology, orthopedics and metabolism Provides an authoritative introduction for non-specialists and readers from undergraduate level upwards, as well as up-to-date foundational content for those familiar with the field Includes multimedia features, cross-references and color images/videos




Biomechanics and Mechanobiology of Aneurysms


Book Description

Cardiovascular disease is the leading cause of morbidity and premature death of modern era medicine. It is estimated that approximately 81 million people in the United States (US) currently have one or more of the many forms of cardiovascular disease, resulting in 1 in every 2.8 deaths, or 900,000 deaths per year. 40% of all deaths in Europe are a result of cardiovascular disease in people under the age of 75. Aneurysms form a significant portion of these cardiovascular related deaths and are defined as a permanent and irreversible localised dilation of a blood vessel greater than 50% of its normal diameter. Although aneurysms can form in any blood vessel, the more lethal aneurysms develop in the cranial arteries, and in the thoracic aorta and abdominal aorta. Frequently aneurysms are undetected and if left untreated may eventually expand until rupture with very high levels of morbidity and mortality. The biomechanics and mechanobiology of aneursymal diseases are not fully understood and this monograph aims to provide new insights into aneurysm aetiology and behavior based on the most recent biomechanics research related to this important topic. The contributors to this volume bring together a unique blend of expertise in experimental, computational and tissue biomechanics relating to aneurysm behavior and enable the reader to gain a fresh understanding of key factors influencing aneurysm behavior and treatment. Biological risk factors such as tobacco smoking, sex, age, hypertension, family history and mechanobiological risk factors such as aneurysm geometry and shape as well as mechanical properties of the diseased tissues are considered in detail as are many of the diagnostic and treatment options.




Molecular and Cellular Mechanobiology


Book Description

This book will cover the cutting-edge developments in molecular and cellular mechanobiology to date. Readers will have a clear understanding of mechanobiology at the molecular and cellular levels, encompassing the mechanosensors, transducers, and transcription. An integrative approach across different scales from molecular sensing to mechanotransduction and gene modulation for physiological regulation of cellular functions will be explored, as well as applications to pathophysiological states in disease. A comprehensive understanding of the roles of physicochemical microenvironment and intracellular responses in determining cellular function in health and disease will also be discussed.




Multiscale Modelling in Biomedical Engineering


Book Description

Multiscale Modelling in Biomedical Engineering Discover how multiscale modeling can enhance patient treatment and outcomes In Multiscale Modelling in Biomedical Engineering, an accomplished team of biomedical professionals delivers a robust treatment of the foundation and background of a general computational methodology for multi-scale modeling. The authors demonstrate how this methodology can be applied to various fields of biomedicine, with a particular focus on orthopedics and cardiovascular medicine. The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems. Multiscale Modelling in Biomedical Engineering offers readers experiments and exercises to illustrate and implement the concepts contained within. Readers will also benefit from the inclusion of: A thorough introduction to systems biology and multi-scale modeling, including a survey of various multi-scale methods and approaches and analyses of their application in systems biology Comprehensive explorations of biomedical imaging and nanoscale modeling at the molecular, cell, tissue, and organ levels Practical discussions of the mechanotransduction perspective, including recent progress and likely future challenges In-depth examinations of risk prediction in patients using big data analytics and data mining Perfect for undergraduate and graduate students of bioengineering, biomechanics, biomedical engineering, and medicine, Multiscale Modelling in Biomedical Engineering will also earn a place in the libraries of industry professional and researchers seeking a one-stop reference to the basic engineering principles of biological systems.