Aërial Navigation


Book Description




Quo Vadis: Evolution of Modern Navigation


Book Description

Quo Vadis: Evolution of Modern Navigation presents an intelligent and intelligible account of the essential principles underlying the design of satellite navigational systems—with introductory chapters placing them in context with the early development of navigational methods. The material is organized roughly as follows: the first third of the book deals with navigation in the natural world, the early history of navigation, navigating by the stars, precise mechanical chronometers for the determination of longitude at sea, and the development of precise quartz controlled clocks. Then, the reader is introduced to quantum ideas as a lead in to a discussion of microwave and optical interactions with atoms, atomic clocks, laser gyrocompasses, and time based navigation. The final third of the book deals with satellite-based systems, including orbit theory, early satellite navigation systems, and a detailed treatment of the Global Positioning System (GPS). Intended for non-specialists with some knowledge of physics or engineering at the college level, this book covers in an intuitive manner a broad range of topics relevant to the evolution of surface and space navigation, with minimum mathematical formalism.




Introduction to Modern Navigation Systems


Book Description

The emerging technology of very inexpensive inertial sensors is available for navigation as never before. The book lays the analytical foundation for understanding and implementing the navigation equations. It starts by demystifying the central theme of the frame rotation using such algorithms as the quaternions, the rotation vector and the Euler angles. After developing navigation equations, the book introduces the computational issues and discusses the physical aspects that are tied to implementing these equations. The book then explains alignment techniques.Introduction to Modern Navigation Systems offers an efficient algorithm for polar navigation. It also shows how to enhance the performance of the inertial system when aided by the Global Positioning System. It is an appropriate textbook for senior undergraduate and graduate students in aeronautical and electrical engineering. It could also be used as a reference book for practitioners in the field.