A Modern View of Geometry


Book Description

Elegant exposition of postulation geometry of planes offers rigorous, lucid treatment of coordination of affine and projective planes, set theory, propositional calculus, affine planes with Desargues and Pappus properties, more. 1961 edition.




Plane and Solid Geometry


Book Description

This is a book on Euclidean geometry that covers the standard material in a completely new way, while also introducing a number of new topics that would be suitable as a junior-senior level undergraduate textbook. The author does not begin in the traditional manner with abstract geometric axioms. Instead, he assumes the real numbers, and begins his treatment by introducing such modern concepts as a metric space, vector space notation, and groups, and thus lays a rigorous basis for geometry while at the same time giving the student tools that will be useful in other courses.










Modern Projective Geometry


Book Description

This monograph develops projective geometries and provides a systematic treatment of morphisms. It introduces a new fundamental theorem and its applications describing morphisms of projective geometries in homogeneous coordinates by semilinear maps. Other topics treated include three equivalent definitions of projective geometries and their correspondence with certain lattices; quotients of projective geometries and isomorphism theorems; and recent results in dimension theory.




Modern Geometries


Book Description

Engaging, accessible, and extensively illustrated, this brief, but solid introduction to modern geometry describes geometry as it is understood and used by contemporary mathematicians and theoretical scientists. Basically non-Euclidean in approach, it relates geometry to familiar ideas from analytic geometry, staying firmly in the Cartesian plane. It uses the principle geometric concept of congruence or geometric transformation--introducing and using the Erlanger Program explicitly throughout. It features significant modern applications of geometry--e.g., the geometry of relativity, symmetry, art and crystallography, finite geometry and computation. Covers a full range of topics from plane geometry, projective geometry, solid geometry, discrete geometry, and axiom systems. For anyone interested in an introduction to geometry used by contemporary mathematicians and theoretical scientists.




The Poincaré Half-plane


Book Description

The Poincare Half-Planeprovides an elementary and constructive development of this geometry that brings the undergraduate major closer to current geometric research. At the same time, repeated use is made of high school geometry, algebra, trigonometry, and calculus, thus reinforcing the students' understanding of these disciplines as well as enhancing their perception of mathematics as a unified endeavor.




Kiselev's Geometry


Book Description

This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.




College Geometry


Book Description

The standard university-level text for decades, this volume offers exercises in construction problems, harmonic division, circle and triangle geometry, and other areas. 1952 edition, revised and enlarged by the author.




Classical Algebraic Geometry


Book Description

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.