Modified Nucleic Acids


Book Description

This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.




Modified Nucleic Acids in Biology and Medicine


Book Description

This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.




Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides


Book Description

Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides describes the procedures and protocols related to the modification of nucleosides, nucleotides and oligonucleotides via Pd-mediated cross-coupling processes. The book highlights the growing area of nucleic acid modification and how Pd-mediated coupling reactions can assist this development. Users will find key synthetic protocols for these reactions in this latest volume in the Latest Trends in Palladium Chemistry series. As most of the research in the field of antiviral agents has centered on the use of modified nucleosides that have exhibited promising activity, this book provides an up-to-date reference for both professionals in industry and other interested parties. - Provides synthetic routes for useful nucleoside molecules, information otherwise found only through time-consuming literature searches - Covers metal-mediated and metal-catalyzed cross coupling processes of nucleosides and related compounds - Includes Suzuki-Miyaura, Stille and Sonogashira reactions, as well as C-H bond functionalization - Highlights the growing area of nucleic acid modification and how Pd-mediated coupling reactions can assist




Nucleic Acids Chemistry


Book Description

This book compiles recent research on the modification of nucleic acids. It covers backbone modifications and conjugation of lipids, peptides and proteins to oligonucleotides and their therapeutic use. Synthesis and application in biomedicine and nanotechnology of aptamers, fluorescent and xeno nucleic acids, DNA repair and artificial DNA are discussed as well.




Spherical Nucleic Acids


Book Description

Spherical nucleic acids (SNAs) comprise a nanoparticle core and a densely packed and highly oriented nucleic acid shell, typically DNA or RNA. They have novel architecture-dependent properties that distinguish them from all other forms of nucleic acids and make them useful in materials synthesis, catalysis, diagnostics, therapeutics, and optics/plasmonics. This book covers over two decades of Dr. Mirkin’s research on SNAs and their anisotropic analogues, including synthesis and fundamental properties, and applications in colloidal crystallization, adaptive matter, and nanomedicine, spanning extra- and intracellular diagnostics, gene regulation, and immunomodulation. It is a reprint volume that compiles 101 key papers from high-impact journals in this research area published by the Mirkin Group at Northwestern University, Illinois, USA, within the International Institute for Nanotechnology, and collaborators. Volume 1 provides an overview and a historical framework of engineering matter from DNA-modified constructs and discusses the enabling features of nucleic acid–functionalized nanomaterials. Volume 2 covers design rules for colloidal crystallization, building blocks for crystal engineering, and DNA and RNA as programmable bonds. Volume 3 discusses colloidal crystallization processes and routes to hierarchical assembly, dynamic nanoparticle superlattices, surface-based and template-confined colloidal crystallization, optics and plasmonics with nanoparticle superlattices, and postsynthetic modification and catalysis with nanoparticle superlattices. Volume 4 covers diagnostic modalities, and intracellular therapeutic and diagnostic schemes based upon nucleic acid–functionalized nanomaterials.




The Chemical Biology of Nucleic Acids


Book Description

With extensive coverage of synthesis techniques and applications, this text describes chemical biology techniques which have gained significant impetus during the last five years. It focuses on the methods for obtaining modified and native nucleic acids, and their biological applications. Topics covered include: chemical synthesis of modified RNA expansion of the genetic alphabet in nucleic acids by creating new base pairs chemical biology of DNA replication: probing DNA polymerase selectivity mechanisms with modified nucleotides nucleic-acid-templated chemistry chemical biology of peptide nucleic acids (PNA) the interactions of small molecules with DNA and RNA the architectural modules of folded RNAs genesis and biological applications of locked nucleic acid (LNA) small non-coding RNA in bacteria microRNA-guided gene silencing nucleic acids based therapies innate immune recognition of nucleic acid light-responsive nucleic acids for the spatiotemporal control of biological processes DNA methylation frameworks for programming RNA devices RNA as a catalyst: The Diels-Alderase-Ribozyme evolving an understanding of RNA function by in vitro approaches the chemical biology of aptamers: synthesis and applications nucleic acids as detection tools bacterial riboswitch discovery and analysis The Chemical Biology of Nucleic Acids is an essential compendium of the synthesis of nucleic acids and their biological applications for bioorganic chemists, chemical biologists, medicinal chemists, cell biologists, and molecular biologists.




Current Protocols in Nucleic Acid Chemistry


Book Description

Good methods must be reliable, well-tested, and honed to minimize the time and expense required to achieve the desired results. CPNC provides a continuously growing and evolving set of protocols that allows researchers to benefit from the experience of other researchers around the world. The core manual provides a comprehensive set of protocols that have been compiled, revised, and streamlined over the last 6 years. Quarterly updates provide new protocols in emerging areas of research as well as continued advances and new applications for fundamental methods. The book is designed to grow and change with the field of nucleic acid chemistry. Fundamental nucleoside chemistry methods include sugar-base condensation, phosphorylation, and nucleoside protection. Methods for oligonucleotide synthesis include H-phosphonate and phosphoramidite approaches, solid-phase and solution-phase synthesis, large-scale synthesis, synthesis for modified and unmodified oligonucleotides, conjugation of oligonucleotides, synthesis without base protection, and synthesis on microarrays. More specialized synthetic methods include synthesis of biologically active nucleosides and prodrugs. Purification and characterization methods are detailed. Advanced methods include biophysical analysis, combinatorial methods, and nanotechnology. Each protocol includes rationale for choosing appropriate methods, step-by-step procedures, complete recipes, anticipated results, characterization data, and troubleshooting, as well as background and recommended reading. The level of procedural detail is far beyond that found in the research literature, and tips and comments from authors are geared towards ensuring reliable duplication in the laboratory.




Synthesis of Therapeutic Oligonucleotides


Book Description

This book presents the latest knowledge on a broad range of topics relating to the synthesis of natural and artificial oligonucleotides with therapeutic potential. Nucleic acid-based therapeutics are attracting much attention, and numerous therapeutic oligonucleotides, such as antisense oligonucleotides, siRNAs, splice-switching oligonucleotides, and nucleic acid aptamers, are being evaluated in clinical trials for the treatment of a variety of diseases. Synthesis of Therapeutic Oligonucleotides covers a broad range of topics in the field that are of high relevance to researchers, including the synthesis of natural and chemically modified oligonucleotides, the development of novel nucleic acid analogs, industrial scale synthesis and purification of oligonucleotides, and important aspects of chemistry, manufacturing, and controls (CMC). The aim is to provide new insights and inspire fresh ideas in nucleic acid chemistry that may ultimately lead to novel concepts and techniques and the discovery of more effective nucleic acid drugs. The book will be of high value for both established researchers in the field and students intending to specialize in nucleic acid chemistry research.







DNA and RNA Modification Enzymes


Book Description

This volume is a timely and comprehensive description of the many facets of DNA and RNA modification-editing processes and to some extent repair mechanisms. Each chapter offers fundamental principles as well as up to date information on recent advances in the field (up to end 2008). They ended by a shortconclusion and future prospect' section and