Modulation-doped Field Effect Transistors for High-power Microwave Applications


Book Description

The need for high-power, low-noise transistors operating at frequencies of 1GHz and above has accelerated over the past several years, because applications in consumer markets, including telecommunications products, have increased dramatically. Transistors in the silicon system are having difficulty providing the high-power, low-noise characteristics at operation above 1 GHz. Transistors based on InP and GaAs, which include HBTs, MESFETs, and HEMTs, have proven to be excellent devices and can provide high-power, low-noise capabilities at frequencies of 100 GHz and beyond. Issues of importance for high-power microwave transistors include breakdown mechanisms, linearity, and material selection.




Handbook for III-V High Electron Mobility Transistor Technologies


Book Description

This book focusses on III-V high electron mobility transistors (HEMTs) including basic physics, material used, fabrications details, modeling, simulation, and other important aspects. It initiates by describing principle of operation, material systems and material technologies followed by description of the structure, I-V characteristics, modeling of DC and RF parameters of AlGaN/GaN HEMTs. The book also provides information about source/drain engineering, gate engineering and channel engineering techniques used to improve the DC-RF and breakdown performance of HEMTs. Finally, the book also highlights the importance of metal oxide semiconductor high electron mobility transistors (MOS-HEMT). Key Features Combines III-As/P/N HEMTs with reliability and current status in single volume Includes AC/DC modelling and (sub)millimeter wave devices with reliability analysis Covers all theoretical and experimental aspects of HEMTs Discusses AlGaN/GaN transistors Presents DC, RF and breakdown characteristics of HEMTs on various material systems using graphs and plots




RF and Microwave Semiconductor Device Handbook


Book Description

Offering a single volume reference for high frequency semiconductor devices, this handbook covers basic material characteristics, system level concerns and constraints, simulation and modeling of devices, and packaging. Individual chapters detail the properties and characteristics of each semiconductor device type, including: Varactors, Schottky diodes, transit-time devices, BJTs, HBTs, MOSFETs, MESFETs, and HEMTs. Written by leading researchers in the field, the RF and Microwave Semiconductor Device Handbook provides an excellent starting point for programs involving development, technology comparison, or acquisition of RF and wireless semiconductor devices.




Handbook of RF and Microwave Power Amplifiers


Book Description

This is a one-stop guide for circuit designers and system/device engineers, covering everything from CAD to reliability.




HEMT Technology and Applications


Book Description

This book covers two broad domains: state-of-the-art research in GaN HEMT and Ga2O3 HEMT. Each technology covers materials system, band engineering, modeling and simulations, fabrication techniques, and emerging applications. The book presents basic operation principles of HEMT, types of HEMT structures, and semiconductor device physics to understand the device behavior. The book presents numerical modeling of the device and TCAD simulations for high-frequency and high-power applications. The chapters include device characteristics of HEMT including 2DEG density, Id-Vgs, Id-Vds, transconductance, linearity, and C-V. The book emphasizes the state-of-the-art fabrication techniques of HEMT and circuit design for various applications in low noise amplifier, oscillator, power electronics, and biosensor applications. The book focuses on HEMT applications to meet the ever-increasing demands of the industry, innovation in terms of materials, design, modeling, simulation, processes, and circuits. The book will be primarily helpful to undergraduate/postgraduate, researchers, and practitioners in their research.










Handbook of GaN Semiconductor Materials and Devices


Book Description

This book addresses material growth, device fabrication, device application, and commercialization of energy-efficient white light-emitting diodes (LEDs), laser diodes, and power electronics devices. It begins with an overview on basics of semiconductor materials, physics, growth and characterization techniques, followed by detailed discussion of advantages, drawbacks, design issues, processing, applications, and key challenges for state of the art GaN-based devices. It includes state of the art material synthesis techniques with an overview on growth technologies for emerging bulk or free standing GaN and AlN substrates and their applications in electronics, detection, sensing, optoelectronics and photonics. Wengang (Wayne) Bi is Distinguished Chair Professor and Associate Dean in the College of Information and Electrical Engineering at Hebei University of Technology in Tianjin, China. Hao-chung (Henry) Kuo is Distinguished Professor and Associate Director of the Photonics Center at National Chiao-Tung University, Hsin-Tsu, Taiwan, China. Pei-Cheng Ku is an associate professor in the Department of Electrical Engineering & Computer Science at the University of Michigan, Ann Arbor, USA. Bo Shen is the Cheung Kong Professor at Peking University in China.




CVD of Nonmetals


Book Description

Written by leading experts in the field, this practical reference handbook offers an up-to-date, critical survey of the chemical vapor deposition (CVD) of nonmetals, a key technology in semiconductor electronics, finishing, and corrosion protection. The basics necessary for any CVD process are discussed in the introduction. In the following chapters, precursor requirements, with an emphasis on materials chemistry, common structures of reactants and substrates, as well as reaction control are discussed for a broad range of compositions including superconducting, conducting, semiconducting, insulating and structural materials. Technological issues, such as reactor geometries and operation parameters, are assessed and the viability of the method, both technically and economically, is compared with other techniques for the preparation of thin films. Relevant materials and technical data are collected in tables throughout. An extensive glossary, list of abbreviations and acronyms, and over 1400 references round off this impressive work. The 'CVD of Nonmetals' offers a stimulating combination of basic concepts and practical applications. Materials scientists, solid-state and organometallic chemists, physicists, engineer, as well as graduate students will find this book of enomous value.




Frontiers of Thin Film Technology


Book Description

Frontiers of Thin Film Technology, Volume 28 focuses on recent developments in those technologies that are critical to the successful growth, fabrication, and characterization of newly emerging solid-state thin film device architectures. Volume 28 is a condensed sampler of the Handbook for use by professional scientists, engineers, and students involved in the materials, design, fabrication, diagnostics, and measurement aspects of these important new devices.