Autophagy and Senescence in Cancer Therapy


Book Description

Advances in Cancer Research, Volume 150, the latest release in this ongoing series, covers the relationship(s) between autophagy and senescence, how they are defined, and the influence of these cellular responses on tumor dormancy and disease recurrence. Specific sections in this new release include Autophagy and senescence, converging roles in pathophysiology, Cellular senescence and tumor promotion: role of the unfolded protein response, autophagy and senescence in cancer stem cells, Targeting the stress support network regulated by autophagy and senescence for cancer treatment, Autophagy and PTEN in DNA damage-induced senescence, mTOR as a senescence manipulation target: A forked road, and more. - Addresses the relationship between autophagy and senescence in cancer therapy - Covers autophagy and senescence in tumor dormancy - Explores autophagy and senescence in disease recurrence




Protein Tyrosine Kinases


Book Description

Leading researchers, from the Novartis group that pioneered Gleevec/GlivecTM and around the world, comprehensively survey the state of the art in the drug discovery processes (bio- and chemoinformatics, structural biology, profiling, generation of resistance, etc.) aimed at generating PTK inhibitors for the treatment of various diseases, including cancer. Highlights include a discussion of the rationale and the progress made towards generating "selective" low molecular-weight kinase inhibitors; an analysis of the normal function, role in disease, and application of platelet-derived growth factor antagonists; and a summary of the factors involved in successful structure-based drug design. Additional chapters address the advantages and disadvantages of in vivo preclinical models for testing protein kinase inhibitors with antitumor activity and the utility of different methods in the drug discovery and development process for determining "on-target" vs "off-target" effects of kinase inhibitors.







Chemical Induced Apoptosis


Book Description




Epithelial-Mesenchymal Plasticity in Cancer Metastasis


Book Description

Recent studies have highlighted that epithelial-mesenchymal transition (EMT) is not only about cell migration and invasion, but it can also govern many other important elements such as immunosuppression, metabolic reprogramming, senescence-associated secretory phenotype (SASP), stem cell properties, therapy resistance, and tumor microenvironment interactions. With the on-going debate about the requirement of EMT for cancer metastasis, an emerging focus on intermediate states of EMT and its reverse process mesenchymal-epithelial transition (MET) offer new ideas for metastatic requirements and the dynamics of EMT/MET during the entire metastatic cascade. Therefore, we would like to initiate discussions on viewing EMT and its downstream signaling networks as a fulcrum of cellular plasticity, and a facilitator of the adaptive responses of cancer cells to distant organ microenvironments and various therapeutic assaults. We hereby invite scientists who have prominently contributed to this field, and whose valuable insights have led to the appreciation of epithelial-mesenchymal plasticity as a more comprehensive mediator of the adaptive response of cancer cells, with huge implications in metastasis, drug resistance, tumor relapse, and patient survival.




Autophagy and Cancer


Book Description

With the explosion of information on autophagy in cancer, this is an opportune time to speed the efforts to translate our current knowledge about autophagy regulation into better understanding of its role in cancer. This book will cover the latest advances in this area from the basics, such as the molecular machinery for autophagy induction and regulation, up to the current areas of interest such as modulation of autophagy and drug discovery for cancer prevention and treatment. The text will include an explanation on how autophagy can function in both oncogenesis and tumor suppression and a description of its function in tumor development and tumor suppression through its roles in cell survival, cell death, cell growth as well as its influences on inflammation, immunity, DNA damage, oxidative stress, tumor microenvironment, etc. The remaining chapters will cover topics on autophagy and cancer therapy. These pages will serve as a description on how the pro-survival function of autophagy may help cancer cells resist chemotherapy and radiation treatment as well as how the pro-death functions of autophagy may enhance cell death in response to cancer therapy, and how to target autophagy for cancer prevention and therapy − what to target and how to target it. ​




Metronomic Chemotherapy


Book Description

This book analyzes all aspects of metronomic chemotherapy, a new approach involving low-dose, long-term, and frequently administered therapy that has preclinical and clinical activity in various tumors. After an opening section on the pharmacological bases of metronomic chemotherapy, including its antiangiogenic effects and impact on immunity, preclinical studies on various classes of drug are discussed. Clinical applications of metronomic chemotherapy in a wide variety of tumors are then addressed in detail, with description of the results of all published studies. The clinical pharmacology of metronomic chemotherapy is also considered in depth, encompassing pharmacokinetics, pharmacogenetics, pharmacoeconomics, and adverse drug reactions. The book closes by describing the role of this therapy in the veterinarian clinic.




Senolytics in Disease, Ageing and Longevity


Book Description

This book offers comprehensive information on the new and rapidly evolving science of identifying and targeting senescent cells, and on the exciting prospect of new diagnostic and therapeutic opportunities for stopping, and even reversing, the progression of disease and the deterioration of the human body due to ageing. According to recent United Nations data, by 2050 one in six people worldwide will be older than age 65, with peaks rising to one in four people in Europe and North America. Remarkably, the number of persons aged 80 years or older is expected to triple, from 143 million in 2019 to 426 million in 2050. First documented in the 1960s, the concept of cellular senescence as an underlying cause of ageing has been established in the course of the last decade. Using genetically engineered mouse models, researchers have demonstrated that the selective elimination of senescent cells can block and even reverse a number of age-related dysfunctions and pathologies, promoting both better health and longer life in the elderly. These include cardiovascular diseases; neurological disorders; type 1 and type 2 diabetes; inflammatory diseases; fibrosis; geriatric syndromes; chronic diseases resulting in organ dysfunction; the integrity of the musculoskeletal system; and cancer. Some senolytic agents have already progressed into trials. These include UBX0101 for the treatment of osteoarthritis (now in phase II), a cocktail of dasatinib and quercetin for the management of idiopathic pulmonary fibrosis and chronic kidney disease, and ABT-263 in combination with senescence-inducing chemotherapies for the treatment of advanced solid tumours. In addition, the book discusses pathways to early phase clinical trials and translational approaches in medicine and ageing, highlighting new opportunities as well as current limitations, challenges and alternatives. Given its scope, it will benefit a broad audience of advanced educators, researchers, graduate students and practitioners.




Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging


Book Description

Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging is an eleven volume series that discusses in detail all aspects of autophagy machinery in the context of health, cancer, and other pathologies. Autophagy maintains homeostasis during starvation or stress conditions by balancing the synthesis of cellular components and their deregulation by autophagy. This series discusses the characterization of autophagosome-enriched vaccines and its efficacy in cancer immunotherapy. Autophagy serves to maintain healthy cells, tissues, and organs, but also promotes cancer survival and growth of established tumors. Impaired or deregulated autophagy can also contribute to disease pathogenesis. Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward-thinking, these books offer a valuable guide to cellular processes while also inciting researchers to explore their potentially important connections. - Presents the most advanced information regarding the role of the autophagic system in life and death - Examines whether autophagy acts fundamentally as a cell survivor or cell death pathway or both - Introduces new, more effective therapeutic strategies in the development of targeted drugs and programmed cell death, providing information that will aid in preventing detrimental inflammation - Features recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, including atherosclerosis and CNS tumors, and their development and treatment - Includes chapters authored by leaders in the field around the globe—the broadest, most expert coverage available




Heat Shock Proteins in Cancer


Book Description

Heat shock proteins are emerging as important molecules in the development of cancer and as key targets in cancer therapy. These proteins enhance the growth of cancer cells and protect tumors from treatments such as drugs or surgery. However, new drugs have recently been developed particularly those targeting heat shock protein 90. As heat shock protein 90 functions to stabilize many of the oncogenes and growth promoting proteins in cancer cells, such drugs have broad specificity in many types of cancer cell and offer the possibility of evading the development of resistance through point mutation or use of compensatory pathways. Heat shock proteins have a further property that makes them tempting targets in cancer immunotherapy. These proteins have the ability to induce an inflammatory response when released in tumors and to carry tumor antigens to antigen presenting cells. They have thus become important components of anticancer vaccines. Overall, heat shock proteins are important new targets in molecular cancer therapy and can be approached in a number of contrasting approaches to therapy.