Molecular Biology of the Cell
Author :
Publisher :
Page : 0 pages
File Size : 14,73 MB
Release : 2002
Category : Cells
ISBN : 9780815332183
Author :
Publisher :
Page : 0 pages
File Size : 14,73 MB
Release : 2002
Category : Cells
ISBN : 9780815332183
Author :
Publisher :
Page : 0 pages
File Size : 29,45 MB
Release : 2004
Category : Cells
ISBN :
Author :
Publisher :
Page : pages
File Size : 47,28 MB
Release : 2002
Category :
ISBN : 9780815340720
Author : B.A. Ponder
Publisher : Springer Science & Business Media
Page : 222 pages
File Size : 25,71 MB
Release : 2012-12-06
Category : Medical
ISBN : 9401106770
It has been recognized for almost 200 years that certain families seem to inherit cancer. It is only in the past decade, however, that molecular genetics and epidemiology have combined to define the role of inheritance in cancer more clearly, and to identify some of the genes involved. The causative genes can be tracked through cancer-prone families via genetic linkage and positional cloning. Several of the genes discovered have subsequently been proved to play critical roles in normal growth and development. There are also implications for the families themselves in terms of genetic testing with its attendant dilemmas, if it is not clear that useful action will result. The chapters in The Genetics of Cancer illustrate what has already been achieved and take a critical look at the future directions of this research and its potential clinical applications.
Author : Joseph E. Roulston
Publisher : Springer Science & Business Media
Page : 389 pages
File Size : 12,41 MB
Release : 2008-02-01
Category : Medical
ISBN : 1592597602
We are currently experiencing a fundamental shift in the way in which we approach the characterization of cancer. Never before has the make up of cancer tissues and individual cells been so exhaustively researched and char- terized. We are now capable of producing molecular “fingerprints” that ch- acterize the expression of all known and unknown genes within tumors and their surrounding tissues. More than 30,000 different genes may be measured in each patient’s tumor in a single experiment. Simultaneously, novel therapies that exploit the molecular roadmap have been developed and are now being offered to patients. These novel agents, such as Glivec, Herceptin, Iressa, and others, specifically target individual genes within tumors and can produce d- matic responses in some patients. These drugs are only the forerunners of a coming tidal wave of novel therapeutics that individually target specific m- ecules within cancer cells—more than 300 such agents are currently in phase I or II clinical trials. This is an exciting time for cancer specialists and patients alike. However, if we have learned anything from the past 50 or more years of research into cancer, it is that Lord Beaverbrook, in founding the British national health service in the 1950s, was frighteningly prescient when he defined the primary goal of health care to be “Diagnosis, Diagnosis, Diag- sis. ” Now, more than ever, it is essential that appropriate diagnostic methods and approaches are applied to the selection of patients for treatment.
Author : Frank Joseph Rauscher (III)
Publisher : Cambridge University Press
Page : 985 pages
File Size : 40,54 MB
Release : 2014
Category : Medical
ISBN : 0521876621
Reviews the origins of molecular oncology, including technologies for cancer analysis, key pathways in human malignancies, and available pharmacologic therapies.
Author : Jacqueline Boultwood
Publisher : Springer Science & Business Media
Page : 302 pages
File Size : 13,3 MB
Release : 2008-02-02
Category : Medical
ISBN : 1592591353
Over the past 20 years, technological advances in molecular biology have proven invaluable to the understanding of the pathogenesis of human cancer. The application of molecular technology to the study of cancer has not only led to advances in tumor diagnosis, but has also provided markers for the assessment of prognosis and disease progression. The aim of Molecular Ana- sis of Cancer is to provide a comprehensive collection of the most up-to-date techniques for the detection of molecular changes in human cancer. Leading researchers in the field have contributed chapters detailing practical pro- dures for a wide range of state-of-the-art techniques. Molecular Analysis of Cancer includes chapters describing techniques for the identification of chromosomal abnormalities and comprising: fluor- cent in situ hybridization (FISH), spectral karyotyping (SKY), comparative genomic hybridization (CGH), and microsatellite analysis. FISH has a pro- nent role in the molecular analysis of cancer and can be used for the detection of numerical and structural chromosomal abnormalities. The recently described SKY, in which all human metaphase chromosomes are visualized in specific colors, allows for the definition of all chromosomal rearrangements and marker chromosomes in a tumor cell. Protocols for the detection of chromosomal re- rangements by PCR and RT-PCR are described, as well as the technique of DNA fingerprinting, a powerful tool for studying somatic genetic alterations in tumorigenesis.
Author : Georg F. Weber
Publisher : Springer
Page : 486 pages
File Size : 26,45 MB
Release : 2015-07-22
Category : Medical
ISBN : 3319132784
Molecular Therapies of Cancer comprehensively covers the molecular mechanisms of anti-cancer drug actions in a comparably systematic fashion. While there is currently available a great deal of literature on anti-cancer drugs, books on the subject are often concoctions of invited review articles superficially connected to one another. There is a lack of comprehensive and systematic text on the topic of molecular therapies in cancer. A further deficit in the relevant literature is a progressive sub-specialization that typically limits textbooks on cancer drugs to cover either pharmacology or medicinal chemistry or signal transduction, rather than explaining molecular drug actions across all those areas; Molecular Therapies of Cancer fills this void. The book is divided into five sections: 1. Molecular Targeting of Cancer Cells; 2. Emerging and Alternative Treatment Modalities; 3. Molecular Targeting of Tumor-Host Interactions; 4. Anti-Cancer Drug Pharmacokinetics; and 5. Supportive Therapies.
Author : Georg F. Weber
Publisher : Springer Science & Business Media
Page : 643 pages
File Size : 32,3 MB
Release : 2007-09-12
Category : Medical
ISBN : 1402060165
This book describes molecular processes whose deregulation is important in the formation of tumors. The material is developed from basic cell signaling pathways to their roles in the clinical manifestation of specific cancers. Topics covered include molecular events intrinsic to tumor cells (leading to growth deregulation, extended lifespan, and the ability to invade surrounding tissue), protective mechanisms that prevent transformation (including DNA repair and epigenetic regulation), tumor-host interactions (with the endocrine system, the immune system, and blood vessel formation), and the underlying molecular defects of individual cancers.
Author : Charles Swanton
Publisher : Perspectives Cshl
Page : 350 pages
File Size : 37,37 MB
Release : 2017
Category : Medical
ISBN : 9781621821434
Tumor progression is driven by mutations that confer growth advantages to different subpopulations of cancer cells. As a tumor grows, these subpopulations expand, accumulate new mutations, and are subjected to selective pressures from the environment, including anticancer interventions. This process, termed clonal evolution, can lead to the emergence of therapy-resistant tumors and poses a major challenge for cancer eradication efforts. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine examines cancer progression as an evolutionary process and explores how this way of looking at cancer may lead to more effective strategies for managing and treating it. The contributors review efforts to characterize the subclonal architecture and dynamics of tumors, understand the roles of chromosomal instability, driver mutations, and mutation order, and determine how cancer cells respond to selective pressures imposed by anticancer agents, immune cells, and other components of the tumor microenvironment. They compare cancer evolution to organismal evolution and describe how ecological theories and mathematical models are being used to understand the complex dynamics between a tumor and its microenvironment during cancer progression. The authors also discuss improved methods to monitor tumor evolution (e.g., liquid biopsies) and the development of more effective strategies for managing and treating cancers (e.g., immunotherapies). This volume will therefore serve as a vital reference for all cancer biologists as well as anyone seeking to improve clinical outcomes for patients with cancer.