Molecular and Cellular Iron Transport


Book Description

This text analyzes the molecular mechanisms, chemical behaviour and regulation of iron transport in biological systems and offers novel methods for the assessment of iron transport across biological membranes. It details the characteristics and consequences of iron deficiency and excess to prevent diseases affecting major organ structures and promote bodily iron homeostasis.




The Nramp Family


Book Description

This book is the first comprehensive volume on the "Nramp family", highlighting the physiological importance of Nramp proteins as metal transporters. The molecular knowledge of these membrane proteins is presented from an evolutionary perspective, considering Nramp cellular function and mechanism of transport in key model organisms. The pathological significance of Nramp genetic polymorphism is discussed with emphasis on metal homeostasis and microbial infection. The chapters were contributed by leading investigators, providing a timely state of the art book in this rapidly growing field. The Nramp Family will be useful to a broad community of scientists interested in metal transport and molecular biology. It will be of interest to the research audience in the broad fields of metal ions and molecular medicine.




Iron Transport and Storage


Book Description

The objective of this book is to review and summarize recent developments in our understanding of iron transport and storage in living systems. It includes an overview of the evolutionary aspects of iron metabolism and bacterial iron transport, as well as a detailed discussion of molecules with specific roles in iron metabolism in higher organisms. It also presents relationships between intracellular iron metabolism and cell proliferation. Iron Transport and Storage addresses the comparative aspects of iron transport and storage in different tissues. This essential volume is very useful for hematologists, physical and biological chemists, cell and molecular biologists, physiologists, and clinicians with an interest in the biology and metabolism of iron.




Iron Physiology and Pathophysiology in Humans


Book Description

Iron Physiology and Pathophysiology in Humans provides health professionals in many areas of research and practice with the most up-to-date and well-referenced volume on the importance of iron as a nutrient and its role in health and disease. This important new volume is the benchmark in the complex area of interrelationships between the essentiality of iron, its functions throughout the body, including its critical role in erythropoiesis, the biochemistry and clinical relevance of iron-containing enzymes and other molecules involved in iron absorption, transport and metabolism, he importance of optimal iron status on immune function, and links between iron and the liver, heart, brain and other organs. Moreover, the interactions between genetic and environmental factors and the numerous co-morbidities seen with both iron deficiency and iron overload in at risk populations are clearly delineated so that students as well as practitioners can better understand the complexities of these interactions. Key features of the volume include an in-depth index and recommendations and practice guidelines are included in relevant chapters. The volume contains more than 100 detailed tables and informative figures and up-to-date references that provide the reader with excellent sources of information about the critical role of iron nutrition, optimal iron status and the adverse clinical consequences of altered iron homeostasis. Iron Physiology and Pathophysiology in Humans is an excellent new text as well as the most authoritative resource in the field.




Regulation of Tissue Oxygenation, Second Edition


Book Description

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.




Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc


Book Description

This volume is the newest release in the authoritative series issued by the National Academy of Sciences on dietary reference intakes (DRIs). This series provides recommended intakes, such as Recommended Dietary Allowances (RDAs), for use in planning nutritionally adequate diets for individuals based on age and gender. In addition, a new reference intake, the Tolerable Upper Intake Level (UL), has also been established to assist an individual in knowing how much is "too much" of a nutrient. Based on the Institute of Medicine's review of the scientific literature regarding dietary micronutrients, recommendations have been formulated regarding vitamins A and K, iron, iodine, chromium, copper, manganese, molybdenum, zinc, and other potentially beneficial trace elements such as boron to determine the roles, if any, they play in health. The book also: Reviews selected components of food that may influence the bioavailability of these compounds. Develops estimates of dietary intake of these compounds that are compatible with good nutrition throughout the life span and that may decrease risk of chronic disease where data indicate they play a role. Determines Tolerable Upper Intake levels for each nutrient reviewed where adequate scientific data are available in specific population subgroups. Identifies research needed to improve knowledge of the role of these micronutrients in human health. This book will be important to professionals in nutrition research and education.




Copper Transport and Its Disorders


Book Description

This book is a compilation of presentations at the first meeting devoted to the mo lecular and cellular biology of copper transport. When we first considered the possible program for the meeting, we felt that a forum to integrate the recent advances in molecular understanding of copper transport with the older knowledge of copper metabolism was needed. In addition we wished to have a strong emphasis on the diseases of copper includ ing the genetic diseases, Menkes and Wilson, and other possible health aspects of this met al seen from a molecular perspective. Overall we were very happy with the success of the meeting, and most participants were very enthusiastic. Unfortunately we were not able to obtain manuscripts from every contributor, but the selection in this book covers most of the topics discussed. The history of biological research into copper dates from the latter half of the last century when the presence of copper as a component of living systems was first noted, but it was not until the 1920s that the essential role of copper was first recognized. l. S. McHargue found that plants and animals needed copper for optimal growth and health and proposed that copper was needed for life (McHargue, 1925). Other groups soon confirmed these observations in plants. In animals the requirement of copper for hematopoiesis was discovered in 1928 (Hart et aI.




Iron Metabolism in Health and Disease


Book Description

An overview of human iron metabolism. This book reviews the metabolic importance of iron in evolution, the physiology and biochemistry of internal iron exchange, iron absorption and iron storage, the molecular regulation of cellular iron homeostasis and aspects of iron and disease.




Iron Fortification of Foods


Book Description

Iron Fortification of Foods discusses in detail the problems encountered with different iron sources in staple foods, beverages, condiments, and salt, as well as provides a "how to approach toward solving these problems in both developed and developing countries. Organized into three parts, the book begins with the discussion on the prevalence, causes, and treatment of anemia, as well as the effect of food on the availability of iron fortificants. It then describes the different iron sources, their interaction with food, and their bioavailability. Lastly, it explores the critical area of product application. The book significantly provides needed information for almost anyone, in any country, interested in fortifying food with iron and in treating iron deficiency anemia.