Molecular Aspects of Aging


Book Description

Molecular Aspects of Aging: Understanding Lung Aging covers recent research in the mechanisms that contribute to cellular senescence. Covering universal themes in aging, such as the exhaustion of stem cells and subsequent loss of the regenerative refueling of organs as well as immunosenescence, this text illuminates new directions for research not yet explored in the still poorly investigated area of molecular mechanisms of lung aging. The molecular nature of general aging processes is explored with targeted coverage on how to analyze lung aging through experimental approaches.




Aging at the Molecular Level


Book Description

During the last 40 years, the study of the biological basis of aging has progressed tremendously, and it has now become an independent and respectable field of study and research. The essential cause of aging is molecular damage that slowly overwhelms cellular and organismic defense, repair and maintenance systems. In recent years, a wealth of highly sophisticated research has transformed this idea from a credible hypothesis not only to a major theory, but essentially to accepted knowledge. Aging at the Molecular Level examines the key elements in this transformation. Bringing together contributions from an international team of authors, this volume will be of interest to graduates and postgraduates in the fields of medicine and nursing, researchers of different aspects of biogerontology and those in the pharmaceutical, cosmeceutical, nutraceutical and health-care industry.




Molecular Basis of Nutrition and Aging


Book Description

Molecular Basis of Nutrition and Aging: A Volume in the Molecular Nutrition Series focuses on the nutritional issues associated with aging and the important metabolic consequences of diet, nutrition, and health. The book is subdivided into four parts that reflect the impact of nutrition from a biomolecular level to individual health. In Part One, chapters explore the general aspects of aging, aging phenotypes, and relevant aspects of nutrition related to the elderly and healthy aging. Part Two includes molecular and cellular targets of nutrition in aging, with chapters exploring lipid peroxidation, inflammaging, anabolic and catabolic signaling, epigenetics, DNA damage and repair, redox homeostasis, and insulin sensitivity, among others. Part Three looks at system-level and organ targets of nutrition in aging, including a variety of tissues, systems, and diseases, such as immune function, the cardiovascular system, the brain and dementia, muscle, bone, lung, and many others. Finally, Part Four focuses on the health effects of specific dietary compounds and dietary interventions in aging, including vitamin D, retinol, curcumin, folate, iron, potassium, calcium, magnesium, zinc, copper, selenium, iodine, vitamin B, fish oil, vitamin E, resveratrol, polyphenols, vegetables, and fruit, as well as the current nutritional recommendations. - Offers updated information and a perspectives on important future developments to different professionals involved in the basic and clinical research on all major nutritional aspects of aging - Explores how nutritional factors are involved in the pathogenesis of aging across body systems - Investigates the molecular and genetic basis of aging and cellular senescence through the lens of the rapidly evolving field of molecular nutrition




Molecular Basis of Aging


Book Description

Using a new, integrative approach, Molecular Basis of Aging describes the aging phenomenon within mammalian organisms from the perspective of changes in information storage and coordination between hierarchical orders of structure. This unique approach provides the reader with a thorough insight into the evolution of molecular, cellular, tissue, and organ systems and processes in mammals. This informative volume contains up-to-date reviews of:




Oxford Textbook of Old Age Psychiatry


Book Description

Part of the authoritative Oxford Textbooks in Psychiatry series, Oxford Textbook of Old Age Psychiatry, Third Edition has been thoroughly updated to reflect the developments in old age psychiatry since publication of the Second Edition in 2013, and remains an essential reference for anyone interested in the mental health care of older people.




Molecular Mechanisms of Aging


Book Description




Telomeres and Telomerase in Aging, Disease, and Cancer


Book Description

Telomere shortening represents one of the basic aspects of ageing and telomere dysfunction could contribute to the accumulation of DNA damage during ageing. This book summarizes evidence and data indicating that telomere dysfunction influences human ageing, diseases and cancer. The book describes our current knowledge on checkpoints that limit cellular lifespan and survival in response to telomere dysfunction. There is special focus on adult stem cells.




Molecular Biology of Aging


Book Description

This volume covers the major threads in the molecular genetics of aging, including genes that regulate aging, causes of aging, evolutionary theories of aging, and the relationship between diet and aging. Among specific topics covered are calorie restriction, mitochondria, sirtuins, telomeres, stem cells, and cancer.




Epigenetics of Aging


Book Description

Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.




Biology of Aging


Book Description

The survival of the human species has improved significantly in modern times. During the last century, the mean survival of human populations in developed countries has increased more than during the preceding 5000 years. This improvement in survival was accompanied by an increase in the number of active years. In other words, the increase in mean life span was accompanied by an increase in health span. This is now accentuated by progress in medicine reducing the impact of physiologic events such as menopause and of patho logical processes such as atherosclerosis. Up to now,research on aging, whether theoretical or experimental, has not contributed to improvement in human survival. Actually, there is a striking contrast between these significant modifications in survival and the present knowledge of the mechanisms of human aging. Revealed by this state of affairs are the profound disagreements between gerontologists in regard to the way oflooking at the aging process. The definition of aging itself is difficult to begin with because of the variability of how it occurs in different organisms.