Molecular Aspects of Insect-Plant Associations


Book Description

Thanks to the meticulous and enthusiastic work of insect collectors and taxonomists over the past hundred years and more, we have today a large amount of information on the feeding habits and life styles of sev eral hundred thousands of insect species. Insects that feed on plants during at least one of their life stages constitute about half of the three-quarters of a million described species. Their numbers both in terms of species and individuals together with their small but macroscopic sizes makes the insect-plant biological interface perhaps the most conspicuous, diverse and largest assemblage of intimate interspecies interactions in existence. It is also perhaps the most important biological interface be cause of the plants' role as primary producers upon which all other forms of earthly life depend, thereby bringing herbivorous insects occasionally into direct competition with human food and fiber production. Early enthusiasm revealed many remarkable specializations and associ ations between insects and plants, and occasionally assigned chemical me diators for them. However, the modern practices of large scale crop pro tection by synthetic pesticides and their attendant problems, particularly with resistance in "pests" and destruction of natural enemies, have been in large measure responsible for drawing our attention to the mechanisms whereby plants control insect populations and insects adapt to the plants' defenses. These practices have also brought home the importance of chemical mediators in practically all aspects of insect activities and, in parti cular, the importance of plant allelochemicals in maintaining and balan cing insect-plant associations.




Molecular Aspects of Plant Beneficial Microbes in Agriculture


Book Description

Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.




Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology


Book Description

As food producers, plants are constantly under attack by insects. Over the course of evolution, plants have not only developed a sophisticated defense apparatus but have also refined biochemical defense mechanisms to protect themselves, thereby maintaining the ecological balance. Plant-pest interactions induce an elaborate array of reactions involving the release of volatile compounds, effector and signaling molecules, trans-membrane proteins, and a variety of enzymes and hormones. This book offers a comprehensive guide to the strategies that plants employ against insects and other pests to ensure their continued survival. Addressing an important gap in the literature, it shares the latest findings in the field of plant–pest interactions for a broad audience. Providing an overview of the current state of knowledge on plant-pest interactions and their role in the genetic improvement of crops, it offers an essential guide for researchers and professionals in the fields of agriculture, plant pathology, entomology, cell biology, molecular biology and genetics.




Insect-Plant Biology


Book Description

"Half of all insect species are dependent on living plant tissues, consuming about 10% of plant annual production in natural habitats and an even greater percentage in agricultural systems, despite sophisticated control measures. Plants are generally remarkably well-protected against insect attack, with the result that most insects are highly specialized feeders. The mechanisms underlying plant resistance to invading herbivores on the one side, and insect food specialization on the other, are the main subjects of this book. For insects these include food-plant selection and the complex sensory processes involved, with their implications for learning and nutritional physiology, as well as the endocrinological aspects of life cycle synchronization with host plant phenology. In the case of plants exposed to insect herbivores, they include the activation of defence systems in order to minimize damage, as well as the emission of chemical signals that may attract natural enemies of the invading herbivores and may be exploited by neighbouring plants that mount defences as well." "Insect-Plant Biology discusses the operation of these mechanisms at the molecular and organismal levels, in the context of both ecological interactions and evolutionary relationships. In doing so, it uncovers the highly intricate antagonistic and mutualistic interactions that have evolved between plants and insects. The book concludes with a chapter on the application of our knowledge of insect-plant interactions to agricultural production." "This multidisciplinary approach will appeal to students in agricultural entomology, plant sciences, ecology, and indeed anyone interested in the principles underlying the relationships between the two largest groups of organisms on earth: plants and insects."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved




Molecular Aspects of Plant-Pathogen Interaction


Book Description

The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.




Co-Evolution of Secondary Metabolites


Book Description

This Reference Work is devoted to plant secondary metabolites and their evolutionary adaptation to different hosts and pests. Secondary metabolites play an important biological role in plants’ defence against herbivores, abiotic stresses and pathogens, and they also attract beneficial organisms such as pollinators. In this work, readers will find a comprehensive review of the phytochemical diversity, modification and adaptation of secondary metabolites, and the consequences of their co-evolution with plant parasites, pollinators, and herbivores. Chapters from expert contributors are organised into twelve sections that collate the current knowledge in intra-/inter-specific diversity in plant secondary metabolites, changes in secondary metabolites during plants’ adaptation to different environmental conditions, and co-evolution of host-parasite metabolites. Among the twelve themed parts, readers will also discover expert analysis on the genetics and chemical ecology evolution of secondary metabolites, and particular attention is also given to allelochemicals, bioactive molecules in plant defence and the evolution of sensory perception in vertebrates. This reference work will appeal to students, researchers and professionals interested in the field of plant pathology, plant breeding, biotechnology, agriculture and phytochemistry.




The Biology of Plant-Insect Interactions


Book Description

Overviews of biochemical, genetic, and molecular perspectives of plant-insect interactions with added emphasis on bioinformatic, genomic, and transcriptome analysis are comprehensively treated in this book. It presents the agro-ecological and evolutionary aspects of plant-insect interactions with an exclusive focus on the climate change effect on the resetting of plant-insect interactions. A valuable resource for biotechnologists, entomologists, agricultural scientists, and policymakers, the book includes theoretical aspects as a base toward real-world applications of holistic integrated pest management in agro-ecosystems.




Introduction to Ecological Biochemistry


Book Description

Ecological biochemistry concerns the biochemistry of interactions between animals, plants and the environment, and includes such diverse subjects as plant adaptations to soil pollutants and the effects of plant toxins on herbivores. The intriguing dependence of the Monarch butterfly on its host plants is chosen as an example of plant-animal coevolution in action. The ability to isolate trace amounts of a substance from plant tissues has led to a wealth of new research, and the fourth edition of this well-known text has consequently been extensively revised. New sections have been provided on the cost of chemical defence and on the release of predator-attracting volatiles from plants. New information has been included on cyanogenesis, the protective role of tannins in plants and the phenomenon of induced defence in plant leaves following herbivory. Advanced level students and research workers aloke will find much of value in this comprehensive text, written by an acknowledged expert on this fascinating subject. The book covers the biochemistry of interactions between animals, plants and the environment, and includes such diverse subjects as plant adaptations to soil pollutants and the effects of plant toxins on herbivores The intriguing dependence of the Monarch butterfly on its host plants is chosen as an example of plant-animal coevolution in action New sections have been added on the cost of chemical defence and on the release of predators attracting volatiles from plants New information has been included on cyanogenesis, the protective role of tannins in plants and the phenomenon of induced defence in plant leaves following herbivory




Specialization, Speciation, and Radiation


Book Description

"This volume captures the state-of-the-art in the study of insect-plant interactions, and marks the transformation of the field into evolutionary biology. The contributors present integrative reviews of uniformly high quality that will inform and inspire generations of academic and applied biologists. Their presentation together provides an invaluable synthesis of perspectives that is rare in any discipline."--Brian D. Farrell, Professor of Organismic and Evolutionary Biology, Harvard University "Tilmon has assembled a truly wonderful and rich volume, with contributions from the lion's share of fine minds in evolution and ecology of herbivorous insects. The topics comprise a fascinating and deep coverage of what has been discovered in the prolific recent decades of research with insects on plants. Fascinating chapters provide deep analyses of some of the most interesting research on these interactions. From insect plant chemistry, behavior, and host shifting to phylogenetics, co-evolution, life-history evolution, and invasive plant-insect interaction, one is hard pressed to name a substantial topic not included. This volume will launch a hundred graduate seminars and find itself on the shelf of everyone who is anyone working in this rich landscape of disciplines."--Donald R. Strong, Professor of Evolution and Ecology, University of California, Davis "Seldom have so many excellent authors been brought together to write so many good chapters on so many important topics in organismic evolutionary biology. Tom Wood, always unassuming and inspired by living nature, would have been amazed and pleased by this tribute."--Mary Jane West-Eberhard, Smithsonian Tropical Research Institute




Novel Aspects of Insect-Plant Interactions


Book Description

Presents the first efforts to explore ecological interactions between insects and plants across several trophic levels, with special focus on mediation of complex interactions by plant allelochemicals. First section looks at effects of plant allelochemicals on predator-prey and host-parasitoid interactions. Second section reveals the role of microorganisms as mediators of interactions between insects and plants. Third section unifies and extends current theory to examine the effects of allelochemicals on the second and third trophic levels. Final section traces the physiological effects of plant allelochemicals in animal behavior, population regulation, maintenance of mimicry systems, and evolution of host range.