Molecular Basis of Oxidative Stress


Book Description

Sets the stage for the development of better diagnostic techniques and therapeutics Featuring contributions from an international team of leading clinicians and biomedical researchers, Molecular Basis of Oxidative Stress reviews the molecular and chemical bases of oxidative stress, describing how oxidative stress can lead to the development of cancer and cardiovascular and neurodegenerative diseases. Moreover, it explains the potential role of free radicals in both the diagnosis and the development of therapeutics to treat disease. Molecular Basis of Oxidative Stress is logically organized, beginning with a comprehensive discussion of the fundamental chemistry of reactive species. Next, the book: Presents new mechanistic insights into how oxidative damage of biomolecules occurs Examines how these oxidative events effect cellular metabolism Investigates the role of oxidative stress in the pathogenesis of cancer, neurodegenerative disease, cardiovascular disease, and cystic fibrosis Explores opportunities to improve the diagnosis of disease and the design of new therapeutic agents Readers will find much novel information, including new radical chemistries and the latest discoveries of how free radicals react with biomolecules. The contributors also present recent findings that help us better understand the initiation of oxidative stress and the mechanisms leading to the pathogenesis of various diseases. Throughout the book, the use of molecular structures helps readers better understand redox chemistry. In addition, plenty of detailed figures illustrate the mechanisms of oxidative stress and disease pathogenesis. Examining everything from the basic chemistry of oxidative stress to the pathogenesis of disease, Molecular Basis of Oxidative Stress will help readers continue to explore the nature of oxidative stress and then use that knowledge to develop new approaches to prevent, detect, and treat a broad range of disease conditions.




Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality


Book Description

Presents the latest knowledge of improving the stress tolerance, yield, and quality of rice crops One of the most important cereal crops, rice provides food to more than half of the world population. Various abiotic stresses—currently impacting an estimated 60% of crop yields—are projected to increase in severity and frequency due to climate change. In light of the threat of global food grain insecurity, interest in molecular rice breeding has intensified in recent years. Progress has been made, but there remains an urgent need to develop stress-tolerant, bio-fortified rice varieties that provide consistent and high-quality yields under both stress and non-stress conditions. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is the first book to provide comprehensive and up-to-date coverage of this critical topic, containing the physiological, biochemical, and molecular information required to develop effective engineering strategies for enhancing rice yield. Authoritative and in-depth chapters examine the molecular and genetic bases of abiotic stress tolerance, discuss yield and quality improvement of rice, and explore new approaches to better utilize natural resources through modern breeding. Topics Include rice adaptation to climate change, enriching rice yields under low phosphorus and light intensity, increasing iron, zinc, vitamin and antioxidant content, and improving tolerance to salinity, drought, heat, cold, submergence, heavy metals and Ultraviolet-B radiation. This important resource: Contains the latest scientific information on a wide range of topics central to molecular breeding for rice Provides timely coverage molecular breeding for improving abiotic stress tolerance, bioavailability of essential micronutrients, and crop productivity through biotechnological methods Features detailed chapters written by internationally-recognized experts in the field Discusses recent progress and future directions in molecular breeding strategies and research Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is required reading for rice researchers, agriculturists, and agribusiness professionals, and the ideal text for instructors and students in molecular plant breeding, abiotic stress tolerance, environmental science, and plant physiology, biochemistry, molecular biology, and biotechnology.




Antioxidants in Sport Nutrition


Book Description

The use of antioxidants in sports is controversial due to existing evidence that they both support and hinder athletic performance. Antioxidants in Sport Nutrition covers antioxidant use in the athlete ́s basic nutrition and discusses the controversies surrounding the usefulness of antioxidant supplementation. The book also stresses how antioxidants may affect immunity, health, and exercise performance. The book contains scientifically based chapters explaining the basic mechanisms of exercise-induced oxidative damage. Also covered are methodological approaches to assess the effectiveness of antioxidant treatment. Biomarkers are discussed as a method to estimate the bioefficacy of dietary/supplemental antioxidants in sports. This book is useful for sport nutrition scientists, physicians, exercise physiologists, product developers, sport practitioners, coaches, top athletes, and recreational athletes. In it, they will find objective information and practical guidance.




Brain Aging


Book Description

Recognition that aging is not the accumulation of disease, but rather comprises fundamental biological processes that are amenable to experimental study, is the basis for the recent growth of experimental biogerontology. As increasingly sophisticated studies provide greater understanding of what occurs in the aging brain and how these changes occur




Oxidative Stress and Antioxidant Protection


Book Description

Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease Oxidative Stress and Antioxidant Protection begins with a historical perspective of pioneers in oxidative stress with an introductory section that explains the basic principles related to oxidative stress in biochemistry and molecular biology, demonstrating both pathways and biomarkers. This section also covers diagnostic imaging and differential diagnostics. The following section covers psychological, physiologic, pharmacologic and pathologic correlates. This section addresses inheritance, gender, nutrition, obesity, family history, behavior modification, natural herbal-botanical products, and supplementation in the treatment of disease. Clinical trials are also summarized for major medical disorders and efficacy of treatment, with particular focus on inflammation, immune response, recycling, disease progression, outcomes and interventions. Each of the chapters describes what biomarker(s) and physiological functions may be relevant to a concept of specific disease and potential alternative therapy. The chapters cover medical terminology, developmental change, effects of aging, senescence, lifespan, and wound healing, and also illustrates cross-over exposure to other fields. The final chapter covers how and when to interpret appropriate data used in entry level biostatistics and epidemiology. Authored and edited by leaders in the field, Oxidative Stress and Antioxidant Protection will be an invaluable resource for students and researchers studying cell biology, molecular biology, and biochemistry, as well professionals in various health science fields.




Mitochondrial Dysfunction


Book Description

Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.




Oxidative Stress


Book Description

Oxidative Stress: Eustress and Distress presents current knowledge on oxidative stress within the framework of redox biology and translational medicine. It describes eustress and distress in molecular terms and with novel imaging and chemogenetic approaches in four sections: - A conceptual framework for studying oxidative stress. - Processes and oxidative stress responses. Signaling in major enzyme systems (oxidative eustress), and damaging modification of biomolecules (oxidative distress). - The exposome addresses lifelong exposure and impact on health, nutrient sensing, exercise and environmental pollution. - Health and disease processes, including ischemia-reperfusion injury, developmental and psychological disorders, hepatic encephalopathy, skeletal muscle disorders, pulmonary disease, gut disease, organ fibrosis, and cancer. Oxidative Stress: Eustress and Distress is an informative resource useful for active researchers and students in biochemistry, molecular biology, medicinal chemistry, pharmaceutical science, nutrition, exercise physiology, analytical chemistry, cell biology, pharmacology, clinical medicine, and environmental science. - Characterizes oxidative stress within the framework of redox biology, redox signaling, and medicine - Empowers researchers and students to quantify specific reactants noninvasively, identify redox biomarkers, and advance translational studies - Features contributions from international leaders in oxidative stress and redox biology research




Oxidative Stress and Vascular Disease


Book Description

One of the major biomedical triumphs of the post-World War II era was the defmitive demonstration that hypercholesterolemia is a key causative factor in atherosclerosis; that hypercholesterolemia can be effectively treated; and that treatment significantly reduces not only coronary disease mortality but also all cause mortality. Treatment to lower plasma levels of cholesterol - primarily low density lipoprotein (LDL) cholesterol - is now accepted as best medical practice and both physicians and patients are being educated to take aggressive measures to lower LDL. We can confidently look forward to important decreases in the toll of coronary artery disease over the coming decades. However, there is still uncertainty as to the exact mechanisms by which elevated plasma cholesterol and LDL levels initiate and favor the progression of lesions. There is general consensus that one of the earliest responses to hypercholesterolemia is the adhesion of monocytes to aortic endothelial cells followed by their penetration into the subendothelial space, where they differentiate into macrophages. These cells, and also medial smooth muscle cells that have migrated into the subendothelial space, then become loaded with mUltiple, large droplets of cholesterol esters . . . the hallmark of the earliest visible atherosclerotic lesion, the so-called fatty streak. This lesion is the precursor of the more advanced lesions, both in animal models and in humans. Thus the centrality of hypercholesterolemia cannot be overstated. Still, the atherogenic process is complex and evolves over a long period of time.




Innovative Medicine


Book Description

This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.




Cellular Implications Of Redox Signaling


Book Description

Redox regulation, like phosphorylation, is a covalent regulatory system that controls many of the normal cellular functions of all living cells and organisms. In addition, it controls how cells respond to stress involving oxidants and free radicals, which underlie many degenerative diseases. This area is undergoing a transition from general knowledge to specific description of the components and mechanisms involved.This invaluable book provides a timely basic description of a field whose relevance to cell biology and degenerative diseases is of the utmost importance. It describes the state of the art, lays the foundations for understanding the reactions involved, and presents the prospects for future developments. It can serve as a basic text for any undergraduate or graduate course that deals with redox regulation, oxidative stress and free radicals under normal and pathological conditions in bacterial, plant and animal cells.