Molecular Catalysts


Book Description

Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers will gain a deeper understanding of the catalytic transformations, allowing them to adapt the knowledge to their own investigations. With its ideal combination of fundamental and applied research, this is an essential reference for researchers and graduate students both in academic institutions and in the chemical industry. With a foreword by Nobel laureate Roald Hoffmann.




Bifunctional Molecular Catalysis


Book Description

Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of ”Green” Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Bäckvall: Shvo’s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis.




Molecular Catalysts for Energy Conversion


Book Description

Over the past decade the topic of energy and environment has been ackno- edged among many people as a critical issue to be solved in 21st century since the Kyoto Protocol came into e?ect in 1997. Its political recognition was put forward especially at Heiligendamm in 2007, when the e?ect of carbon dioxide emission and its hazard in global climate were discussed and shared univ- sallyascommonknowledge.Controllingtheglobalwarmingintheeconomical framework of massive development worldwide through this new century is a very challenging problem not only among political, economical, or social c- cles but also among technological or scienti?c communities. As long as the humans depend on the combustion of fossil for energy resources, the waste heat exhaustion and CO emission are inevitable. 2 In order to establish a new era of energy saving and environment benign society, which is supported by technologies and with social consensus, it is important to seek for a framework where new clean energy system is inc- porated as infrastructure for industry and human activities. Such a society strongly needs innovative technologies of least CO emission and e?cient en- 2 ergy conversion and utilization from remaining fossil energies on the Earth. Energy recycling system utilizing natural renewable energies and their c- version to hydrogen may be the most desirable option of future clean energy society. Thus the society should strive to change its energy basis, from foss- consuming energy to clean and recycling energy.







Molecularly Imprinted Catalysts


Book Description

Molecularly Imprinted Catalysts: Principle, Synthesis, and Applications is the first book of its kind to provide an in-depth overview of molecularly imprinted catalysts and selective catalysis, including technical details, principles of selective catalysis, preparation processes, the catalytically active polymers themselves, and important progress made in this field. It serves as an important reference for scientists, students, and researchers who are working in the areas of molecular imprinting, catalysis, molecular recognition, materials science, biotechnology, and nanotechnology. Comprising a diverse group of experts from prestigious universities and industries across the world, the contributors to this book provide access to the latest knowledge and eye-catching achievements in the field, and an understanding of what progress has been made and to what extent it is being advanced in industry. The first book in the field on molecularly imprinted catalysts (MIPs) Provides a systematic background to selective catalysis, especially the basic concepts and key principles of the different MIP-based catalysts Features state-of-the art presentation of preparation methods and applications of MIPs Written by scientists from prestigious universities and industries across the world, and edited by veteran researchers in molecular imprinting and selective catalysis




Molecular Dynamics and Complexity in Catalysis and Biocatalysis


Book Description

This textbook presents a concise comparison of catalytic and biocatalytic systems outlining their catalytic properties and peculiarities. Moreover, it presents a brief introduction to the science of catalysis and attempts to unify different catalytic systems into a single, conceptually coherent structure. In fact, molecular dynamics and complexity may occur in both catalysts and biocatalysts, with many similarities in both their structural configuration and operational mechanisms. Moreover, the interactions between the different components of the catalytic system that are important in defining the overall activity, including the nature of active sites are discussed. Each chapter includes end of chapter questions supported by an online instructor solution manual. This textbook will be useful for undergraduate and graduate chemistry and biochemistry students.




Heterogeneous Catalysis for Sustainable Energy


Book Description

Heterogeneous Catalysis for Sustainable Energy Explore the state-of-the-art in heterogeneous catalysis In Heterogeneous Catalysis for Sustainable Energy, a team of distinguished researchers delivers a comprehensive and cutting-edge treatment of recent advancements in energy-related catalytic reactions and processes in the field of heterogeneous catalysis. The book includes extensive coverage of the hydrogen economy, methane activation, methanol-to-hydrocarbons, carbon dioxide conversion, and biomass conversion. The authors explore different aspects of the technology, like reaction mechanisms, catalyst synthesis, and the commercial status of the reactions. The book also includes: A thorough introduction to the hydrogen economy, including hydrogen production, the reforming of oxygen-containing chemicals, and advances in Fischer-Tropsch Synthesis Comprehensive explorations of methane activation, including steam and dry reforming of methane and methane activation over zeolite catalysts Practical discussions of alkane activation, including cracking of hydrocarbons to light olefins and catalytic dehydrogenation of light alkanes In-depth examinations of zeolite catalysis and carbon dioxide as C1 building block Perfect for catalytic, physical, and surface chemists, Heterogeneous Catalysis for Sustainable Energy also belongs in the libraries of materials scientists with an interest in energy-related reactions and processes in the field of heterogeneous catalysis.




Fundamentals of Molecular Catalysis


Book Description

Almost all contemporary organic synthesis involve transition metal complexes as catalysts or particular reagents. The aim of this book is to provide the reader with detailed accounts of elementary processes within molecular catalysis to allow its development and as an aid in designing novel catalytic systems. The book comprises authoritative reviews on elementary processes from experts working at the forefront of organometallic chemistry. · This is the first book that focuses on elementary processes in transition metal complexes for understanding catalytic mechanisms· Provides detailed description of elementary processes involved in catalytic cycles by experts in the field· Provides an overview of the mechanisms of various homogeneous catalyses




Molecular Catalysis of Rare-Earth Elements


Book Description

Alexander L. Reznichenko and Kai C. Hultzsch: Catalytic -Bond Metathesis Zhichao Zhang, Dongmei Cui, Baoli Wang, Bo Liu, Yi Yang: Polymerization of 1,3-Conjugated Dienes with Lanthanide Precursors Frank T. Edelmann: Homogeneous Catalysis using Lanthanide Amidinates and Guanidinates Tianshu Li, Jelena Jenter, Peter W. Roesky: Rare Earth Metal Post-metallocene Catalysts with Chelating Amido Ligands




Soft Matters for Catalysts


Book Description

With the increasing demand for optimization of energy storage, maintenance of the environment, and effective production, control on nanostructures of catalysts and optimization of their organization have become key to achieving high efficiency and specificity in energy and material conversion systems. This book emphasizes and summarizes the novel design of soft matters (molecules, polymers, assembled motifs, etc.) for nanocatalysts and nanocatalyst supports. The diversity or specialty of soft matters offers a new perspective and great promise for the development of new nanocatalytic systems for future requirements. Soft matters can provide a simple and well-defined space for the discovery of new catalysts. This book covers nonmetallic organocatalysts, organometallic compounds, dendrimers, ionic liquids, enzymes, polymers, various organized nanoarchitectures for supporting catalysts, and molecular dynamics in catalytic surface reactions. It gives readers a complete picture of the catalysis systems based on soft matters and is a useful reference for advanced undergraduate- and graduate-level students and researchers in chemistry, biology, materials science, nanoscience, polymer science, and catalysis.