Low-Dimensional Solids


Book Description

With physical properties that often may not be described by the transposition of physical laws from 3D space across to 2D or even 1D space, low-dimensional solids exhibit a high degree of anisotropy in the spatial distribution of their chemical bonds. This means that they can demonstrate new phenomena such as charge-density waves and can display nanoparticulate (0D), fibrous (1D) and lamellar (2D) morphologies. This text presents some of the most recent research into the synthesis and properties of these solids and covers: Metal Oxide Nanoparticles Inorganic Nanotubes and Nanowires Biomedical Applications of Layered Double Hydroxides Carbon Nanotubes and Related Structures Superconducting Borides Introducing topics such as novel layered superconductors, inorganic-DNA delivery systems and the chemistry and physics of inorganic nanotubes and nanosheets, this book discusses some of the most exciting concepts in this developing field. Additional volumes in the Inorganic Materials Book Series: Molecular Materials Functional Oxides Porous Materials Energy Materials All volumes are sold individually or as comprehensive 5 Volume Set.




The Molecular Dynamics of Liquid Crystals


Book Description

Liquid-crystalline phases are now known to be formed by an ever growing range of quite diverse materials, these include those of low molecular weight as well as the novel liquid-crystalline polymers, such phases can also be induced by the addition of a solvent to amphiphilic systems leading to lyotropic liquid crystals. Irrespective of the structure of the constituent molecules these numerous liquid-cl)'Stailine phases are characterised by their long range orientational order. In addition certain phases exhibit elements of long range positional order. Our understanding, both experimental and theoretical, at the molecular level of the static behaviour of these fascinating and important materials is now well advanced. In contrast the influence of the long range order; both orientational and positional, on the molecular dynamics in liquid Cl)'Stais is less well understood. In an attempt to address this situation a NATO Advanced Study Institute devoted to liquid ctystal dynamics was held at n Ciocco, Barga, Italy in September 1989. This brought together experimentalists and theoreticians concerned with the various dynamical processes occurring in all liquid crystals. The skills of the participants was impressively wide ranging; they spanned the experimental techniques used in the study of molecular dynamics, the nature of the systems investigated and the theoretical models employed to understand the results. While much was learnt it was also recognised that much more needed to be done in order to advance our understanding of molecular dynamics in liquid Cl)'Stais.




Liquid Crystals


Book Description

Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature -- anisotropic physical properties of solids and rheological behavior of liquids -- and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scientific and industrial research. This book is an outgrowth of the enormous advances made during the last three decades in both our understanding of liquid crystals and our ability to use them in applications. It presents a systematic, self-contained and up-to-date overview of the structure and properties of liquid crystals. It will be of great value to graduates and research workers in condensed matter physics, chemical physics, biology, materials science, chemical and electrical engineering, and technology from a materials science and physics viewpoint of liquid crystals.




Biaxial Nematic Liquid Crystals


Book Description

In the nematic liquid crystal phase, rod-shaped molecules move randomly but remain essentially parallel to one another. Biaxial nematics, which were first predicted in 1970 by Marvin Freiser, have their molecules differentially oriented along two axes. They have the potential to create displays with fast switching times and may have applications in thin-film displays and other liquid crystal technologies. This book is the first to be concerned solely with biaxial nematic liquid crystals, both lyotropic and thermotropic, formed by low molar mass as well as polymeric systems. It opens with a general introduction to the biaxial nematic phase and covers: • Order parameters and distribution functions • Molecular field theory • Theories for hard biaxial particles • Computer simulation of biaxial nematics • Alignment of the phase • Display applications • Characterisation and identification • Lyotropic, thermotropic and colloidal systems together with material design With a consistent, coherent and pedagogical approach, this book brings together theory, simulations and experimental studies; it includes contributions from some of the leading figures in the field. It is relevant to students and researchers as well as to industry professionals working in soft matter, liquid crystals, liquid crystal devices and their applications throughout materials science, chemistry, physics, mathematics and display engineering.




Polymer Liquid Crystals


Book Description

Polymer Liquid Crystals covers the significant developments in the field of highlight oriented polymers. This 12-chapter book emerged from lectures presented during the seminar "Polymer Liquid Crystals: Science and Technology", held at Santa Margherita Ligure, Italy on May 19-23, 1981. The opening chapters highlight the molecular basis of liquid crystallinity. The subsequent chapters deal with the synthesis, structure, properties, and macroscopic phenomena of polymer liquid crystals. These topics are followed by descriptions of the orientation of liquid crystals, specifically the instabilities in low molecular weight nematic and cholesteric liquid crystals. The final chapters consider the applications of these crystals to display devices and the advances in high-strength fibers and molecular composites. This book will be of great value to polymer liquid crystal chemists and researchers.




Liquid Crystals


Book Description

The book begins with a description of the liquid crystal phase emphasizing its relationship to the other three well-known phases of matter. The types of molecules that form liquid crystal phases and the different liquid crystal phases are then discussed. Some of the general properties of liquid crystals are introduced and the book then addresses how we arrived at our current understanding of the liquid crystal phase.




The Physics of Liquid Crystals


Book Description

This new edition of the classic text incorporates the many advances in knowledge about liquid crystals that have taken place since its initial publication in 1974. Entirely new chapters describe the types and properties of liquid crystals in terms of both recently discovered phases and current insight into the nature of local order and isotropic-to-nematic transition. There is an extensive discussion of the symmetrical, macroscopic, dynamic, and defective properties of smectics and columnar phases, with emphasis on order-of-magnitude considerations, all illustrated with numerous descriptions of experimental arrangements. The final chapter is devoted to phase transitions in smectics, including the celebrated analogy between smectic A and superconductors. This new version's topicality and breadth of coverage will ensure that it remains an indispensable guide for researchers and graduate students in mechanics and engineering, and in chemical, solid state, and statistical physics.




Applications of Liquid Crystals


Book Description

Over the past ten years liquid crystals have attracted much interest and considerable progress has been made with respect to our knowledge in this field. The recent development was initiated mainly by the work of J. L. Fergason and G. H. Heilmeier, who pointed out the importance of liquid crystals for thermographic and electro optic applications. The first part of this book is a brief introduction to the physics of liquid crystals. The structures and properties of the three basic types of liquid crystals are discussed. A special paragraph is devoted to electric-field effects, which are important in display applications. The chapter on Scientific Applications gives an insight into the potential applications of liquid crystals in fundamental research, with special emphasis on explaining the principles involved. Two groups of potential applications are discussed in detail: 1. the use of liquid crystals as anisotropic solvent for the determination of molecular properties by means of spectroscopy, and 2. their use in analytical chemistry, particularly in gas chromatography. The reverse process involves the use of the dissolved molecules as microscopic probes in the investigation of the dynamical molecular structure of anisotropic fluid systems (e.g. biological membranes). This extremely important technique is also described.




Physical Properties of Liquid Crystalline Materials


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.




Chemistry of Discotic Liquid Crystals


Book Description

The self-contained properties of discotic liquid crystals (DLCs) render them powerful functional materials for many semiconducting device applications and models for energy and charge migration in self-organized dynamic functional soft materials. The past three decades have seen tremendous interest in this area, fueled primarily by the possibility