Polymer Solar Cells: Molecular Design and Microstructure Control


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Organic Solar Cells


Book Description

Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.




Synthesis and Characterisation of Non-Fullerene Electron Acceptors for Organic Photovoltaics


Book Description

This book reports on the design, synthesis and characterization of new small molecule electron acceptors for polymer solar cells. Starting with a detailed introduction to the science behind polymer solar cells, the author then goes on to review the challenges and advances made in developing non-fullerene acceptors so far. In the main body of the book, the author describes the design principles and synthetic strategy for a new family of acceptors, including detailed synthetic procedures and molecular modeling data used to predict physical properties. An indepth characterization of the photovoltaic performance, with transient absorption spectroscopy (TAS), photo-induced charge extraction, and grazing incidence X-ray diffraction (GIXRD) is also included, and the author uses this data to relate material properties and device performance. This book provides a useful overview for researchers beginning a project in this or related areas.







Fundamentals of Solar Cell Design


Book Description

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.




Design and Synthesis of New Organic Semiconductors for Organic Solar Cells


Book Description

Molecular design and synthesis play critical roles in the development of organic semiconductors for organic photovoltaics (OPVs). This dissertation describes the design, synthesis, and characterization of three classes of organic semiconductors for OPVs: p-type semiconducting polymers, n-type semiconducting polymers, and non-fullerene small molecule acceptors. The relative merits of alternative building blocks and design strategies for organic semiconductors are investigated. Complex factors governing the underlying structure-property-processing-performance relationships are discussed in detail. The fundamentals of organic semiconductors and organic solar cells, state-of-the-art materials and devices, and challenges in the design and synthesis of materials are reviewed in Chapter 1. Chapter 2 discusses the strategy of selenophene substitution as a potential method to improve photovoltaic performance of the regular thiophene-based p-type semiconducting polymers. New selenophene-containing polymers were synthesized based on a widely used polymer, PBDB-T, where the original thiophene units at various side chain and backbone positions were substituted with selenophene. This study revealed the intramolecular and intermolecular interactions related with selenophene substitution, thus provided important guidelines in designing selenophene-containing polymers. Chapter 3 presents a comparative study of the alternating naphthalene diimide-thiophene copolymer, PNDIT-hd, and naphthalene diimide-selenophene copolymer, PNDIS-hd. The effects of selenophene substitution on the intrinsic and photovoltaic blend properties of n-type semiconducting naphthalene diimide-arylene copolymers with simple donor−acceptor architecture were investigated. This study demonstrated multiple advantages of selenophene substitution including enhancing light harvesting, formation of favorable morphology, and reducing charge recombination losses in all-polymer solar cell devices. Towards enhancing the intrinsic stability of small molecule acceptors, novel tridecacyclic ladder structure was designed and realized via Friedlander condensation reactions. The tridecacyclic ladder molecule acceptors (LMAs) described in Chapter 4 combined good solubility with enhanced stabilities and high photovoltaic performance. One of the new LMAs, LTX-4Cl, demonstrated a high PCE of 11.5% with high fill factor of 0.75. This study also unraveled the significant impact of side chains and halogenations on the molecular packing characteristics of the LMAs and the resulted photovoltaic performance. Finally, the results of the above studies are summarized in Chapter 5 and an outlook is given for future development of organic semiconductors and the organic photovoltaic technology.