Combinatorial Chemistry


Book Description

The new time-saving revolution in drug discovery. Combinatorial chemistry, a method for synthesizing millions of chemical compounds much faster than usual, is becoming one of the most useful technical tools available to chemists and researchers working today. Using current advances in computer and laboratory techniques, combinatorial chemistry has freed professionals from the drudgery of piecemeal experimental work and opened new creative possibilities for experimentation. Combinatorial Chemistry: Synthesis and Application details critical aspects of the technique, featuring the work of some of the world's leading chemists, many of whom played a key role in its development. Including examples of both solution-phase and solid-phase approaches as well as the full complement of organic chemistry technologies currently available, the book describes: * Concepts and terms of combinatorial chemistry * Polymer-supported synthesis of organic compounds * Macro beads as microreactors * Solid-phase methods in combinatorial chemistry * Encoded combinatorial libraries, including Rf-encoding of synthesis beads * Strategies for combinatorial libraries of oligosaccharides * Combinatorial libraries of peptides, proteins, and antibodies using biological systems. While combinatorial chemistry originated in peptide chemistry, this volume has deliberately focused on nonpeptide organic applications, illustrating the technique's wide uses. Combinatorial Chemistry introduces organic, medicinal, and pharmaceutical chemists as well as biochemists to this exciting, cost-effective, and practical technique, which has unlocked creative potential for the next millennium.




Combinatorial Library


Book Description

The continued successes of large- and small-scale genome sequencing projects are increasing the number of genomic targets available for drug d- covery at an exponential rate. In addition, a better understanding of molecular mechanisms—such as apoptosis, signal transduction, telomere control of ch- mosomes, cytoskeletal development, modulation of stress-related proteins, and cell surface display of antigens by the major histocompatibility complex m- ecules—has improved the probability of identifying the most promising genomic targets to counteract disease. As a result, developing and optimizing lead candidates for these targets and rapidly moving them into clinical trials is now a critical juncture in pharmaceutical research. Recent advances in com- natorial library synthesis, purification, and analysis techniques are not only increasing the numbers of compounds that can be tested against each specific genomic target, but are also speeding and improving the overall processes of lead discovery and optimization. There are two main approaches to combinatorial library production: p- allel chemical synthesis and split-and-mix chemical synthesis. These approaches can utilize solid- or solution-based synthetic methods, alone or in combination, although the majority of combinatorial library synthesis is still done on solid support. In a parallel synthesis, all the products are assembled separately in their own reaction vessels or microtiter plates. The array of rows and columns enables researchers to organize the building blocks to be c- bined, and provides an easy way to identify compounds in a particular well.




Diversity-Oriented Synthesis


Book Description

Discover an enhanced synthetic approach to developing and screening chemical compound libraries Diversity-oriented synthesis is a new paradigm for developing large collections of structurally diverse small molecules as probes to investigate biological pathways. This book presents the most effective methods in diversity-oriented synthesis for creating small molecule collections. It offers tested and proven strategies for developing diversity-oriented synthetic libraries and screening methods for identifying ligands. Lastly, it explores some promising new applications based on diversity-oriented synthesis that have the potential to dramatically advance studies in drug discovery and chemical biology. Diversity-Oriented Synthesis begins with an introductory chapter that explores the basics, including a discussion of the relationship between diversity-oriented synthesis and classic combinatorial chemistry. Divided into four parts, the book: Offers key chemical methods for the generation of small molecules using diversity-oriented principles, including peptidomimetics and macrocycles Expands on the concept of diversity-oriented synthesis by describing chemical libraries Provides modern approaches to screening diversity-oriented synthetic libraries, including high-throughput and high-content screening, small molecule microarrays, and smart screening assays Presents the applications of diversity-oriented synthetic libraries and small molecules in drug discovery and chemical biology, reporting the results of key studies and forecasting the role of diversity-oriented synthesis in future biomedical research This book has been written and edited by leading international experts in organic synthesis and its applications. Their contributions are based on a thorough review of the current literature as well as their own firsthand experience developing synthetic methods and applications. Clearly written and extensively referenced, Diversity-Oriented Synthesis introduces novices to this highly promising field of research and serves as a springboard for experts to advance their own research studies and develop new applications.




Molecular Diversity and Combinatorial Chemistry


Book Description

Written for advanced undergraduate and graduate students, this textbook makes the main concepts of combinatorial chemistry accessible to the non-specialist.




Combinatorial Chemistry and Technologies


Book Description

Several books on the market cover combinatorial techniques, but they offer just a limited perspective of the field, focusing on selected aspects without examining all approaches and integrated technologies. Combinatorial Chemistry and Technologies: Methods and Applications answers the demand for a complete overview of the field, covering all of the




Dynamic Combinatorial Chemistry


Book Description

Effective techniques for applying Dynamic Combinatorial Chemistry In a relatively short period, Dynamic Combinatorial Chemistry (DCC) has grown from proof-of-concept experiments in a few isolated labs to a broad conceptual framework with applications to an exceptional range of problems in molecular recognition, lead compound identification, catalyst design, nanotechnology, polymer science, and others. Bringing together a group of respected experts, this overview explains how chemists can apply DCC and fragment-based library methods to lead generation for drug discovery and molecular recognition in bioorganic chemistry and materials science. Chapters cover: Basic theory Approaches to binding in proteins and nucleic acids Molecular recognition Self-sorting Catalyst discovery Materials discovery Analytical chemistry challenges A comprehensive, single-source reference about DCC methods and applications including aspects of fragment-based drug discovery, this is a core reference that will spark the development of new solutions and strategies for chemists building structure libraries and designing compounds and materials.




Dynamic Combinatorial Chemistry


Book Description

This long-awaited first book on this exciting new field in organic and supramolecular chemistry explains the fundamentals as well as possible applications of DCC. Authored by the "Who's Who" of DCC it spans the whole range of topics: catalysts, sensors, polymers, ligands, receptors, concluding with a look at future developments and perspectives. All set to become the standard text in the field, this one-stop reference contains everything organic, catalytic, polymer, physical and biochemists need to know.




Combinatorial Synthesis of Natural Product-Based Libraries


Book Description

Traditionally, the search for new compounds from natural products has been a time- and resource-intensive process. The recent application of combinatorial methods and high-throughput synthesis has allowed scientists to generate a range of new molecular structures from natural products and observe how they interact with biological targets. Combinato




Solid-supported Combinatorial and Parallel Synthesis of Small-molecular-weight Compound Libraries


Book Description

This book gives an overview of the current state of the art of combinatorial organic synthesis. While the main focus is on multicomponent and multigeneration strategies using polymeric supports, there is also a Chapter on solution strategies using polymer-grafted reagents which allow minimisation of work-up procedures. Some of the most important strategies and tools are presented and summarised, with an explanation of the pivotal role of organic synthesis in the creation of diversity.




A Handbook for DNA-Encoded Chemistry


Book Description

This book comprehensively describes the development and practice of DNA-encoded library synthesis technology. Together, the chapters detail an approach to drug discovery that offers an attractive addition to the portfolio of existing hit generation technologies such as high-throughput screening, structure-based drug discovery and fragment-based screening. The book: Provides a valuable guide for understanding and applying DNA-encoded combinatorial chemistry Helps chemists generate and screen novel chemical libraries of large size and quality Bridges interdisciplinary areas of DNA-encoded combinatorial chemistry – synthetic and analytical chemistry, molecular biology, informatics, and biochemistry Shows medicinal and pharmaceutical chemists how to efficiently broaden available "chemical space" for drug discovery Provides expert and up-to-date summary of reported literature for DNA-encoded and DNA-directed chemistry technology and methods