Molecular Docking for Computer-Aided Drug Design


Book Description

Molecular Docking for Computer-Aided Drug Design: Fundamentals, Techniques, Resources and Applications offers in-depth coverage on the use of molecular docking for drug design. The book is divided into three main sections that cover basic techniques, tools, web servers and applications. It is an essential reference for students and researchers involved in drug design and discovery. - Covers the latest information and state-of-the-art trends in structure-based drug design methodologies - Includes case studies that complement learning - Consolidates fundamental concepts and current practice of molecular docking into one convenient resource




Computer-Aided Drug Design


Book Description

This book provides up-to-date information on bioinformatics tools for the discovery and development of new drug molecules. It discusses a range of computational applications, including three-dimensional modeling of protein structures, protein-ligand docking, and molecular dynamics simulation of protein-ligand complexes for identifying desirable drug candidates. It also explores computational approaches for identifying potential drug targets and for pharmacophore modeling. Moreover, it presents structure- and ligand-based drug design tools to optimize known drugs and guide the design of new molecules. The book also describes methods for identifying small-molecule binding pockets in proteins, and summarizes the databases used to explore the essential properties of drugs, drug-like small molecules and their targets. In addition, the book highlights various tools to predict the absorption, distribution, metabolism, excretion (ADME) and toxicity (T) of potential drug candidates. Lastly, it reviews in silico tools that can facilitate vaccine design and discusses their limitations.




Applied Case Studies and Solutions in Molecular Docking-Based Drug Design


Book Description

As the pharmaceutical industry continues to advance, new techniques in drug design are emerging. In order to deliver optimum care to patients, the development of innovative pharmacological techniques has become a widely studied topic. Applied Case Studies and Solutions in Molecular Docking-Based Drug Design is a pivotal reference source for the latest scholarly research on the progress of pharmaceutical design and computational approaches in the field of molecular docking. Highlighting innovative research perspectives and real-world applications, this book is ideally designed for professionals, researchers, practitioners, and medical chemists actively involved in computational chemistry and pharmaceutical sciences.




Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery


Book Description

The role of technology in the medical field has resulted in significant developments within the pharmaceutical industry. Computational approaches have emerged as a crucial method in further advancing drug design and development. Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery presents emerging research on the application of computer-assisted design methods for drugs, emphasizing the benefits and improvements that molecular docking has caused within the pharmaceutical industry. Focusing on validation methods, search algorithms, and scoring functions, this book is a pivotal resource for professionals, researchers, students, and practitioners in the field of theoretical and computational chemistry.




Chemical Genomics


Book Description

Advances in chemistry, biology and genomics coupled with laboratory automation and computational technologies have led to the rapid emergence of the multidisciplinary field of chemical genomics. This edited text, with contributions from experts in the field, discusses the new techniques and applications that help further the study of chemical genomics. The beginning chapters provide an overview of the basic principles of chemical biology and chemical genomics. This is followed by a technical section that describes the sources of small-molecule chemicals; the basics of high-throughput screening technologies; and various bioassays for biochemical-, cellular- and organism-based screens. The final chapters connect the chemical genomics field with personalized medicine and the druggable genome for future discovery of new therapeutics. This book will be valuable to researchers, professionals and graduate students in many fields, including biology, biomedicine and chemistry.




Quick Guideline for Computational Drug Design (Revised Edition)


Book Description

Bioinformatics allows researchers to answer biological questions with advanced computational methods which involves the application of statistics and mathematical modeling. Structural bioinformatics enables the prediction and analysis of 3D structures of macromolecules while Computer Aided Drug Designing (CADD) assists scientists to design effective active molecules against diseases. However, the concepts in structural bioinformatics and CADD can be complex to understand for students and educated laymen. This quick guideline is intended as a basic manual for beginner students and instructors involved in bioinformatics and computational chemistry courses. Readers will learn the basics of structural bioinformatics, primary and secondary analysis and prediction, structural visualization, structural analysis and molecular docking. The book provides the reader an easy to read summary of the tools and techniques in structural bioinformatics as well as their limitations. In this revised edition, the authors have updated information in a number of chapters with a specific focus on the section on protein structure visualization and evaluation. Additional information on protein-ligand interaction studies has also been provided in this new edition. Therefore, the book is a useful handbook for aspiring scholars who wish to learn the basic concepts in computational analysis of biomolecules.




Computer-Aided Drug Discovery


Book Description

This detailed volume examines computer-aided drug discovery (CADD), a crucial component of modern drug discovery programs that is widely utilized to identity and optimize bioactive compounds for the development of new drugs. With a focus on the methods that are commonly used in the early stage of drug discovery, chapters explore computer simulation, structure prediction, conformational sampling, binding site mapping, docking and scoring, in silico screening, and fragment-based drug design. In addition to the state-of-the-art theoretical concept, this book also includes step-by-step, readily reproducible computational protocols as well as examples of various CADD strategies. The limitations and potential pitfalls of different computational methods are discussed by experts, and tips and advice for their applications are suggested. Practical and thorough, Computer-Aided Drug Discovery serves as an ideal addition to the Methods in Pharmacology and Toxicology series, guiding researchers toward their lab’s goals with this exciting and versatile technology.




Drug Design


Book Description

The newer research areas in pharmaceutical sciences, particularly molecular modeling and simulations, prompted a more efficient drug discovery process. Informatics integrated with pharmaceutical sciences (cheminformatics and bioinformatics) became an essential component of drug research. Drug informatics such as genomics and proteomics assists in the Rational Drug Design (RDD). This emerging discipline is known as “Computer-Aided Drug Design (CADD)”, which has profound application in rational drug design (RDD). The advanced and adequate practice in drug design informatics is essential for pharmacy graduates. Hence, a companion for acquiring knowledge on these concepts is vital. The students of B. Pharmacy, M. Pharmacy (Pharmaceutical Chemistry, Pharmacology, and Pharmaceutics), biotechnology, biomedical engineering and other interdisciplinary fields may find this book as a reference guide. The salient features of this book are: • Systematic and simple approach • Emphasis on traditional and modern drug design strategies • Comprehensive coverage for the current advances in the drug design • Experimental section to ensure hands-on-experience Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.




Concepts and Experimental Protocols of Modelling and Informatics in Drug Design


Book Description

Concepts and Experimental Protocols of Modelling and Informatics in Drug Design discusses each experimental protocol utilized in the field of bioinformatics, focusing especially on computer modeling for drug development. It helps the user in understanding the field of computer-aided molecular modeling (CAMM) by presenting solved exercises and examples. The book discusses topics such as fundamentals of molecular modeling, QSAR model generation, protein databases and how to use them to select and analyze protein structure, and pharmacophore modeling for drug targets. Additionally, it discusses data retrieval system, molecular surfaces, and freeware and online servers. The book is a valuable source for graduate students and researchers on bioinformatics, molecular modeling, biotechnology and several members of biomedical field who need to understand more about computer-aided molecular modeling. - Presents exercises with solutions to aid readers in validating their own protocol - Brings a thorough interpretation of results of each exercise to help readers compare them to their own study - Explains each parameter utilized in the algorithms to help readers understand and manipulate various features of molecules and target protein to design their study




Drug Discovery and Development


Book Description

The process of drug discovery and development is a complex multistage logistics project spanned over 10-15 years with an average budget exceeding 1 billion USD. Starting with target identification and synthesizing anywhere between 10k to 15k synthetic compounds to potentially obtain the final drug that reaches the market involves a complicated maze with multiple inter- and intra-operative fields. Topics described in this book emphasize the progresses in computational applications, pharmacokinetics advances, and molecular modeling developments. In addition the book also contains special topics describing target deorphaning in Mycobacterium tuberculosis, therapy treatment of some rare diseases, and developments in the pediatric drug discovery process.