Molecular Docking: Quantum Computing Methods


Book Description

"Molecular Docking: Quantum Computing Methods" delves into the intersection of quantum computing and molecular sciences, presenting an in-depth exploration of how quantum algorithms and hardware can revolutionize molecular docking simulations. From foundational principles to advanced case studies, this book navigates the potential of quantum computing to expedite drug discovery, enhance materials science, and unlock new frontiers in computational chemistry. It serves as a comprehensive guide for researchers, students, and professionals looking to harness quantum technologies for transformative advancements in molecular modeling and simulation.




DNA Computing: Quantum Computing Methods


Book Description

"DNA Computing: Quantum Computing Methods" explores the convergence of quantum computing with DNA-based technologies, unveiling how quantum principles amplify the computational capabilities inherent in DNA. This comprehensive work navigates through the transformative potential across healthcare, finance, and beyond, addressing challenges, innovations, and ethical considerations. From advancements in hardware and algorithms to biotechnological integration, this book forecasts a future where quantum DNA computing drives unprecedented scientific and societal advancements."




Graph Theory: Adiabatic Quantum Computing Methods


Book Description

"Graph Theory: Adiabatic Quantum Computing Methods" explores the convergence of quantum computing and graph theory, offering a comprehensive examination of how quantum algorithms can tackle fundamental graph problems. From foundational concepts to advanced applications in fields like cryptography, machine learning, and network analysis, this book provides a clear pathway into the evolving landscape of quantum-enhanced graph algorithms. Designed for researchers, students, and professionals alike, it bridges theoretical insights with practical implementations, paving the way for innovative solutions in computational graph theory.




Biochemistry: Quantum Computing Methods


Book Description

"Biochemistry: Quantum Computing Methods" explores how quantum computing can revolutionize biochemistry, from molecular simulations to drug discovery. This book introduces quantum concepts and their practical applications, offering insights into the future of biotechnological innovation at the intersection of quantum technology and life sciences.




Quantum Mechanics in Drug Discovery


Book Description

This volume looks at applications of quantum mechanical (QM) methods in drug discovery. The chapters in this book describe how QM approaches can be applied to address key drug discovery issues, such as characterizing protein-water-ligand and protein-protein interactions, providing estimates of binding affinities, determining ligand energies and bioactive conformations, refinement of molecular geometries, scoring docked protein–ligand poses, describing molecular similarity, structure–activity-relationship (SAR) analysis, and ADMET prediction. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Quantum Mechanics in Drug Discovery is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists, and drug designers.







Mastering Quantum Computing


Book Description

Embark on a Journey into the Quantum Frontier with "Mastering Quantum Computing" In the realm of cutting-edge technology, quantum computing stands as a revolutionary frontier that promises to transform the world of computation and problem-solving. Quantum computers harness the power of quantum mechanics to tackle complex calculations that are beyond the reach of classical computers. "Mastering Quantum Computing" is your comprehensive guide to unlocking the potential of quantum computation, providing you with the knowledge, skills, and strategies to navigate this exciting and rapidly evolving field. Your Path to Quantum Computing Excellence Quantum computing is more than just the future; it's the present. Whether you're new to quantum computing or an experienced physicist or computer scientist, this book will empower you to master the art and science of quantum computation. What You Will Discover Quantum Fundamentals: Gain a deep understanding of the principles of quantum mechanics and quantum computing, including quantum bits (qubits) and quantum gates. Quantum Algorithms: Explore groundbreaking quantum algorithms and their applications, from Shor's algorithm for integer factorization to Grover's algorithm for unstructured search. Quantum Hardware: Dive into the world of quantum hardware platforms, including superconducting qubits, trapped ions, and topological qubits. Quantum Software Development: Learn to program quantum computers using quantum programming languages like Qiskit, Cirq, and Quipper. Quantum Cryptography: Discover the principles of quantum cryptography, which promises unbreakable security through the laws of quantum physics. Quantum Future: Explore the potential impact of quantum computing on various industries, from cryptography and materials science to artificial intelligence and drug discovery. Why "Mastering Quantum Computing" Is Essential Comprehensive Coverage: This book provides comprehensive coverage of quantum computing topics, ensuring you have a well-rounded understanding of quantum principles and applications. Expert Guidance: Benefit from insights and advice from experienced quantum physicists, computer scientists, and industry experts who share their knowledge and best practices. Career Advancement: Quantum computing is at the forefront of technological innovation, and this book will help you unlock your full potential in this dynamic field. Stay at the Cutting Edge: In a world where quantum computing is poised to revolutionize multiple industries, mastering quantum computing is vital for staying at the forefront of scientific discovery and technological innovation. Your Gateway to Quantum Computing Mastery "Mastering Quantum Computing" is your passport to excellence in the world of quantum computation. Whether you aspire to be a quantum physicist, quantum software developer, or quantum engineer, this guide will equip you with the skills and knowledge to achieve your goals. "Mastering Quantum Computing" is the ultimate resource for individuals seeking to excel in the world of quantum computation and technology. Whether you are new to quantum computing or looking to enhance your skills, this book will provide you with the knowledge and strategies to become a proficient quantum computing expert. Don't wait; begin your journey to quantum computing mastery today! © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com




Lie Group Machine Learning


Book Description

This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artifi cial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artifi cial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Li Fanzhang is professor at the Soochow University, China. He is director of network security engineering laboratory in Jiangsu Province and is also the director of the Soochow Institute of industrial large data. He published more than 200 papers, 7 academic monographs, and 4 textbooks. Zhang Li is professor at the School of Computer Science and Technology of the Soochow University. She published more than 100 papers in journals and conferences, and holds 23 patents. Zhang Zhao is currently an associate professor at the School of Computer Science and Technology of the Soochow University. He has authored and co-authored more than 60 technical papers.




Converging Pharmacy Science and Engineering in Computational Drug Discovery


Book Description

The world of pharmaceutical research is moving at lightning speed, and the age-old approach to drug discovery faces many challenges. It's a fascinating time to be on the cutting edge of medical innovation, but it's certainly not without its obstacles. The process of developing new drugs is often time-consuming, expensive, and fraught with uncertainty. Researchers are constantly seeking ways to streamline this process, reduce costs, and increase the success rate of bringing new drugs to market. One promising solution lies in the convergence of pharmacy science and engineering, particularly in computational drug discovery. Converging Pharmacy Science and Engineering in Computational Drug Discovery presents a comprehensive solution to these challenges by exploring the transformative synergy between pharmacy science and engineering. This book demonstrates how researchers can expedite the identification and development of novel therapeutic compounds by harnessing the power of computational approaches, such as sophisticated algorithms and modeling techniques. Through interdisciplinary collaboration, pharmacy scientists and engineers can revolutionize drug discovery, paving the way for more efficient and effective treatments. This book is an invaluable resource for pharmaceutical scientists, researchers, and engineers seeking to enhance their understanding of computational drug discovery. This book inspires future innovations by showcasing cutting-edge methodologies and innovative research at the intersection of pharmacy science and engineering. It contributes to the ongoing evolution of pharmaceutical research. It offers practical insights and solutions that will shape the future of drug discovery, making it essential reading for anyone involved in the pharmaceutical industry.




Molecular Docking for Computer-Aided Drug Design


Book Description

Molecular Docking for Computer-Aided Drug Design: Fundamentals, Techniques, Resources and Applications offers in-depth coverage on the use of molecular docking for drug design. The book is divided into three main sections that cover basic techniques, tools, web servers and applications. It is an essential reference for students and researchers involved in drug design and discovery. - Covers the latest information and state-of-the-art trends in structure-based drug design methodologies - Includes case studies that complement learning - Consolidates fundamental concepts and current practice of molecular docking into one convenient resource