Molecular Dynamic Simulations of the Intergranular Films Between Alumina and Silicon Nitride Crystal Grains


Book Description

The intergranular films (IGFs) between the ceramics grains have very important effects on the structure and mechanical properties on the whole ceramics and have been studied for many decades. In the thesis, molecular dynamic (MD) computer simulations were applied to study the IGFs between the alumina and silicon nitride ceramic grains. Preferential adsorption of specific ions from the IGFs to the contacting surfaces of the alumina crystals was observed in the study of calcium-alumino-silicate glassy (CAS) IGFs formed between the combined basal and prism orientations of [alpha]-Al2O3 crystals. This segregation of specific ions to the interface enables formation of localized, ordered structures between the IGF and the crystals. However, the segregation behavior of the ions is anisotropic, depending on the orientation of the [alpha]-Al2O3 crystals. Self-diffusion of calcium ions between these CAS IGFs was also carried out by MD simulations. The results show that the diffusion coefficients adjacent to the interfaces are smaller and the activation energies are much higher than those in the interior of the IGF and in bulk glasses. It was also suggested that Ca transport is mainly though the interior of the IGF and implies that diffusion would be significantly inhibited by sufficiently thin IGFs. The growth of the alumina ceramic grains was simulated in the contacting with IGFs containing high concentrations of aluminum ions. Five different compositions in the IGFs were studied. Results show preferential growth along the [1120] of the (1120) surface in comparison to growth along the [0001] direction on the (0001) surface for compositions near a Ca/Al ratio of 0.5. The simulations also show the mechanism by which Ca ions in the IGF inhibit growth on the basal surface. The simulations provide an atomistic view of attachment onto crystal surfaces, affecting grain growth in alumina. The dissolution of the alumina crystal grains in the silicate melts is another important issue in the application of alumina ceramics. The simulations results showed that alumina grains dissolved into the melts homogeneously at very high temperatures. The orientation of the crystals and the compositions of the melts only take effect at some intermediate temperatures, to make the alumina grains dissolution anisotropic. The fracture phenomena of the pure silica IGFs between the basal silicon nitride crystals were studied by applying the constant tensile strain on the simulated IGF system, as well as for the bulk silica glass for the comparison. The data indicated that the fracture was happened in the interior of the IGFs and the thickness of the IGFs has important effect on the fracture stress/strain relationships.







Interfacial Phenomena


Book Description

Since the publication of the first edition of Interfacial Phenomena, the interest in interfaces and surfactants has multiplied, along with their applications. Experimental and theoretical advances have provided scientists with greater insight into the structure, properties, and behavior of surfactant and colloid systems. Emphasizing equil




Interfacial Phenomena


Book Description

Interfacial Phenomena explores the more primary properties of different liquid interfaces. This book is divided into eight chapters, where Chapter 1 establishes the basic concepts of the physics of surfaces, including the properties of matter in the surface layer. Chapters 2 and 3 further discuss the concepts of electrostatic and electrokinetic phenomena, respectively. Other areas discussed in the later chapters include adsorption at liquid interfaces; properties of monolayers; reactions at liquid interfaces; and mass transfer across interfaces. Chapter 8 discusses the more relevant aspects of disperse systems and adhesion as related to the interfacial properties discussed in the previous chapters. The text is a valuable source of information to students and researchers in the fields of chemistry, biology, and chemical engineering and can also be used for industrial and academic laboratories.




Fluid Interfacial Phenomena


Book Description

Leading contributors describe state-of-the-art research in experimental and theoretical liquid interfacial phenomena. Areas covered include the intrinsic interface, dynamics at a liquid-vapour interface, structure and properties of the liquid-vapour interface of a simple metal, the electric double layer, light-scattering at the fluid interface, statistical mechanics of spherical surfaces, and properties of water layers adjacent to interfaces.







Interface Thermodynamics with Applications to Atomistic Simulations


Book Description

Interfaces are ubiquitous in natural phenomena. While the description of interfaces in fluid systems is well developed, solid-fluid and solid-solid interfaces are not well understood. This deficiency is especially true for solid-solid interfaces, which play critical roles in materials engineering, solid-state physics and solid-state chemistry. In this thesis, the Gibbs theory of interfaces is generalized to describe phase boundaries under non-hydrostatic stress in multicomponent systems. We obtain equations that describe coherent solid-solid interfaces with shear stresses parallel to the boundary plane, incoherent solid-solid interfaces for certain constraint variations, solid-fluid interfaces, grain boundaries and surfaces. In the second part of the thesis, the developed theory is applied to study particular types of interfaces using atomistic simulations. We modeled solid surface, solid-liquid interface and grain boundaries. The simulations allowed to calculate values of key thermodynamic properties, clarify behavior of these properties with temperature, composition and stress and test the predictions of the theory. Surface surface free energy and surface stress in a single component system were computed as functions of temperature. The values of these two excess properties do not converge near the melting point despite the extensive surface premelting. Solid-liquid interface free energy was computed using the developed thermodynamic integration technique as a function of composition in CuAg binary alloy and as a function of biaxial strain in a single component Cu system. In the later case the equilibrium states between the non-hydrostatically stressed solid and liquid were accurately predicted using the derived Clausius-Clapeyron type equation. We show that for non-hydrostatic equilibrium interfaces stress is not unique and compute different interface stresses using our simulation data. We also studied effects of elastic deformation, temperature and chemical composition on properties of a symmetrical tilt grain boundary in Cu and CuAg alloy. Excess grain boundary free energy was computed as a function of lateral strain, normal stress and shear stress parallel to the boundary plane. We also employed the derived thermodynamic integration method to compute grain boundary free energy as a function of temperature and composition. Maxwell type relations predicted by the adsorption equation were tested and verified. We proposed a thermodynamic model of liquid nucleation on superheated grain boundaries based on the sharp-interface approximation with a disjoining potential. The model predicts the shape and size of the critical nucleus by using a variational approach. Contrary to the classical nucleation theory, the model predicts the existence of a critical temperature of superheating and offers a simple formula for its calculation. The model is tested against molecular dynamic simulations in which liquid nuclei at a superheated boundary were obtained by an adiabatic trapping procedure.