Molecular Dynamics of Nanobiostructures


Book Description

A lot of discoveries in modern science and technology, in particular, recent progress in nanotechnologies, are inseparably linked with the use of computer molecular simulation methods. Today, molecular simulation is one of the basic instruments in exploring the properties of nano- and biostructures. Molecular simulation is a practical tool for the development of new materials and new drugs, as well as for performing large-scale calculations on molecular complexes of hundreds of thousands or multi-million particle systems. In this book, original papers are collected that demonstrate efficient uses of molecular dynamics (MD) simulation for studying nanoscale phenomena in a number of models from material and life sciences.







Molecular Dynamics of Nanostructures and Nanoionics


Book Description

Nanostructured materials with multiple components and complex structures are the current focus of research and are expected to develop further for material designs in many applications in electrochemical, colloidal, medical, pharmaceutical, and several other fields. This book discusses complex nanostructured systems exemplified by nanoporous silicates, spontaneously formed gels from silica-nanocolloidal solutions, and related systems, and examines them using molecular dynamics simulations. Nanoporous materials, nanocolloidal systems, and gels are useful in many applications and can be used in electric devices and storage, and for gas, ion, and drug delivery. The book gives an overview of the history, current status, and frontiers of the field. It also discusses the fundamental aspects related to the common behaviors of some of these systems and common analytical methods to treat them.




Molecular Nano Dynamics


Book Description

From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.




Molecular Nano Dynamics, 2 Volume Set


Book Description

From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.




Simulations in Nanobiotechnology


Book Description

Until the late 20th century, computational studies of biomolecules and nanomaterials had considered the two subjects separately. A thorough presentation of state-of-the-art simulations for studying the nanoscale behavior of materials, Simulations in Nanobiotechnology discusses computational simulations of biomolecules and nanomaterials together. The book gives readers insight into not only the fundamentals of simulation-based characterizations in nanobiotechnology, but also in how to approach new and interesting problems in nanobiotechnology using basic theoretical and computational frameworks. Presenting the simulation-based nanoscale characterizations in biological science, Part 1: Describes recent efforts in MD simulation-based characterization and CG modeling of DNA and protein transport dynamics in the nanopore and nanochannel Presents recent advances made in continuum mechanics-based modeling of membrane proteins Summarizes theoretical frameworks along with atomistic simulations in single-molecule mechanics Provides the computational simulation-based mechanical characterization of protein materials Discussing advances in modeling techniques and their applications, Part 2: Describes advances in nature-inspired material design; atomistic simulation-based characterization of nanoparticles’ optical properties; and nanoparticle-based applications in therapeutics Overviews of the recent advances made in experiment and simulation-based characterizations of nanoscale adhesive properties Suggests theoretical frameworks with experimental efforts in the development of nanoresonators for future nanoscale device designs Delineates advances in theoretical and computational methods for understanding the mechanical behavior of a graphene monolayer The development of experimental apparatuses has paved the way to observing physics at the nanoscale and opened a new avenue in the fundamental understanding of the physics of various objects such as biological materials and nanomaterials. With expert contributors from around the world, this book addresses topics such as the molecular dynamics of protein translocation, coarse-grained modeling of CNT-DNA interactions, multi-scale modeling of nanowire resonator sensors, and the molecular dynamics simulation of protein mechanics. It demonstrates the broad application of models and simulations that require the use of principles from multiple academic disciplines.







Molecular Nano Dynamics, 2 Volume Set


Book Description

From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.




Modeling of Nanotoxicity


Book Description

This book provides a comprehensive overview of the fundamentals of nanotoxicity modeling and its implications for the development of novel nanomedicines. It lays out the fundamentals of nanotoxicity modeling for an array of nanomaterial systems, ranging from carbon-based nanoparticles to noble metals, metal oxides, and quantum dots. The author illustrates how molecular (classical mechanics) and atomic (quantum mechanics) modeling approaches can be applied to bolster our understanding of many important aspects of this critical nanotoxicity issue. Each chapter is organized by types of nanomaterials for practicality, making this an ideal book for senior undergraduate students, graduate students, and researchers in nanotechnology, chemistry, physics, molecular biology, and computer science. It is also of interest to academic and industry professionals who work on nanodrug delivery and related biomedical applications, and aids readers in their biocompatibility assessment efforts in the coming age of nanotechnology. This book also provides a critical assessment of advanced molecular modeling and other computational techniques to nanosafety, and highlights current and future biomedical applications of nanoparticles in relation to nanosafety.




Molecular Modeling and Investigation of Ultrafast Dynamics in Nano-systems


Book Description

In this PhD thesis, the results of molecular dynamics simulation studies of structural properties of nano-aggregates and experimental time-resolved spectroscopy studies of exciton dynamics in nano-structures of chromophores are presented. The OPLS force field parameters of chlorophyll a, astaxanthin (a carotenoid) and phenyltrimethoxysilane molecules are developed to study their structural, physical and thermodynamic properties in solution using classical molecular dynamics simulations. Simulations of chlorophyll a in different solvents show formation of monomeric, dimeric and multimeric structures in methanol, benzene and water, respectively. The structures of the aggregates show that different functional groups present in the ring of the molecule, hydrophobicity of the phytol tail and the water molecules coordinated to the Mg of the chlorin ring play important role in aggregation. Simulations of astaxanthin in water and ethanol mixtures show formation of aggregates in the mixtures in which the water content is more than 50\%. The results show that hydrophobicity of the conjugated chain in astaxanthin plays a major role in aggregation. Apart from the natural systems like light-harvesting complexes, chlorophylls and carotenoids also aggregate on surfaces. In light-harvesting complexes, the aggregation is controlled by proteins in such a way that the aggregates efficiently collect sunlight, which the plants use for photosynthesis. Such a controlled aggregation is also necessary to develop nano-antennas of these chromophores for artificial photosynthesis or other photovoltaic systems. One of the ways to control their aggregation in surfaces is to change the hydrophobicity of the surface. For this reason, a molecular model of the phenyltrimethoxysilane has been parameterized to model hydrophobic phenyl-functionalized inorganic surfaces like silica surface. Functioning of nano-assemblies of chromophores for photovoltaic application relies on formation of excitons, their motion, energy dissipation, charge separation, etc. that follow the absorption of photons. The processes like formation of excitons and charge separation are desirable while energy dissipation by vibrational relaxation are undesirable. In order to control aggregation such that the desirable functions are maximized, the different processes occurring in the nano-aggregates need to investigated. These processes, which occur in femto-second to pico-second timescales, can be studied using different techniques of time-resolved spectroscopy. However, the widely used techniques in time-resolved spectroscopy do not have spatial resolution high enough to study dynamics in individual nano-structures or nano-meter or sub-nanometer thin layers of chromophores. The experimental work presented here present the development and implementation of two techniques: near-field pump-probe technique to study the ultra-fast processes in nano-structures with 100 nm spatial resolution, and transient grating technique to study ultra-fast processes in few to sub-nanometer thin films of chromophores. Results of the investigation of exciton dynamics using the two techniques on 3,4,9,10 Perylenetetracarboxylic dianhydride show ultra-fast exciton annihilation and self-trapping of excitons at high exciton densities. The results also show that the pump-probe spectroscopy using the near field technique allows one to quantify the annihilation rate and diffusion constant of the excitons in nano-crystals. These techniques can also be used to investigate ultra-fast processes in the nano-structures of chlorophylls, carotenoids and their derivatives on functionalized surfaces.