Monte Carlo and Molecular Dynamics Simulations in Polymer Science


Book Description

Written by leading experts from around the world, Monte Carlo and Molecular Dynamics Simulations in Polymer Science comprehensively reviews the latest simulation techniques for macromolecular materials. Focusing in particular on numerous new techniques, the book offers authoritative introductions to solutions of neutral polymers and polyelectrolytes; dynamics of polymer melts, rubbers and gels, and glassy materials; thermodynamics of polymer mixing and mesophase formation, and polymers confined at interfaces and grafted to walls. Throughout, contributors offer practical advice on how to overcome the unique challenges posed by the large size and slow relaxation of polymer coils. Students and researchers in polymer chemistry, polymer physics, chemical engineering, and materials and computational science will all benefit from the cogent, step-by-step introductions contained in this important new book.




Interfacial Dynamics


Book Description

An examination of the theoretical foundations of the kinetics and thermodynamics of solid-liquid interfaces, as well as state-of-the-art industrial applications, this book presents information on surface and colloidal chemical processes and evaluates vital analytical tools such as atomic force microscopy, surface force apparatus measurements, and photon correlation spectroscopy.




Computer Simulation of Polymeric Materials


Book Description

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.




An Introduction to Molecular Dynamics Simulation of Polymer Composites


Book Description

"This book will be beneficial for students, researchers and scientists working in the field of molecular dynamics simulation. In this book, Materials Studio software developed by Accelrys, a software company headquartered in the United States, has been used for performing the simulations and analysis. The source codes written in the book can be used by any one for modeling. The book starts with an introduction to molecular dynamics. Then various molecular dynamics methods will be discussed in detail. As the book progresses, various case studies related to modeling of composites at nano level will be discussed. The properties predicted are mechanical, thermal, optical and electrical. The concept of perl scripting has also been discussed in detail. Lastly the applications of molecular dynamics in various fields of engineering and technology will be discussed. The nanocomposite materials discussed in this book include polymer-matrix composites. The reinforcements used are carbon nanotubes, graphene, nanoparticles and nanofibers"--




Molecular Dynamics


Book Description

Molecular Dynamics is a two-volume compendium of the ever-growing applications of molecular dynamics simulations to solve a wider range of scientific and engineering challenges. The contents illustrate the rapid progress on molecular dynamics simulations in many fields of science and technology, such as nanotechnology, energy research, and biology, due to the advances of new dynamics theories and the extraordinary power of today's computers. This first book begins with a general description of underlying theories of molecular dynamics simulations and provides extensive coverage of molecular dynamics simulations in nanotechnology and energy. Coverage of this book includes: Recent advances of molecular dynamics theory Formation and evolution of nanoparticles of up to 106 atoms Diffusion and dissociation of gas and liquid molecules on silicon, metal, or metal organic frameworks Conductivity of ionic species in solid oxides Ion solvation in liquid mixtures Nuclear structures




Foundations of Molecular Modeling and Simulation


Book Description

This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.




Theory and Modeling of Polymer Nanocomposites


Book Description

This edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book useful for academic and industrial practitioners alike.




Molecular Interfacial Phenomena of Polymers and Biopolymers


Book Description

This book combines three fundamental areas of interest to the science and engineering community, these being material science, nanotechnology and molecular engineering. Although there have been various results published in this field, there has yet to be a fully comprehensive review. This book covers key research on molecular mechanisms and thermodynamic behaviour of (bio)polymer surfaces and interfaces, from theoretical and experimental perspectives.




Nonequilibrium Molecular Dynamics


Book Description

This coherent collection of theory, algorithms, and illustrative results presents the field of nonequilibrium molecular dynamics in detail.




Physical Properties of Polymers Handbook


Book Description

This book offers concise information on the properties of polymeric materials, particularly those most relevant to physical chemistry and chemical physics. Extensive updates and revisions to each chapter include eleven new chapters on novel polymeric structures, reinforcing phases in polymers, and experiments on single polymer chains. The study of complex materials is highly interdisciplinary, and new findings are scattered among a large selection of scientific and engineering journals. This book brings together data from experts in the different disciplines contributing to the rapidly growing area of polymers and complex materials.