Molecular Gas Dynamics


Book Description

This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier–Stokes effects are demonstrated for typical examples—Bénard and Taylor–Couette problems—in the context of a new framework. A new type of ghost effect is also discussed.




Nonequilibrium Gas Dynamics and Molecular Simulation


Book Description

7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index




Molecular Gas Dynamics and the Direct Simulation of Gas Flows


Book Description

This second edition of a highly regarded text covers all the recent research developments in gas dynamics including the direct simulation Monte Carlo method (DSMC).




Molecular Gas Dynamics


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.




Rarefied Gas Dynamics


Book Description

Aerodynamics is a science engaged in the investigation of the motion of air and other gases and their interaction with bodies, and is one of the most important bases of the aeronautic and astronautic techniques. The continuous improvement of the configurations of the airplanes and the space vehicles aid the constant enhancement of their performances are closely related with the development of the aerodynamics. In the design of new flying vehicles the aerodynamics will play more and more important role. The undertakings of aeronautics and astronautics in our country have gained achievements of world interest, the aerodynamics community has made outstanding contributions for the development of these undertakings and the science of aerodynamics. To promote further the development of the aerodynamics, meet the challenge in the new century, summary the experience, cultivate the professional personnel and to serve better the cause of aeronautics and astronautics and the national economy, the present Series of Modern Aerodynamics is organized and published.




Gas Dynamics


Book Description

This book consists of two parts, theory and applications. Part I introduces the kinetic theory of gases with relevance to molecular energies and intermolecular forces. Part II focuses on how these theories are used to explain real techniques and phenomena involving gases. By stressing the practical implications, the book explains the theory of gas dynamics in a highly readable and comprehensive manner.




Molecular Gas Dynamics


Book Description

This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier–Stokes effects are demonstrated for typical examples—Bénard and Taylor–Couette problems—in the context of a new framework. A new type of ghost effect is also discussed.




Introduction to Molecular Beams Gas Dynamics


Book Description

Introduction to Molecular Beams Gas Dynamics is devoted to the theory and phenomenology of supersonic molecular beams. The book describes the main physical idea and mathematical methods of the gas dynamics of molecular beams, while the detailed derivation of results and equations is accompanied by an explanation of their physical meaning. Many of the applications of supersonic molecular beams are discussed, including their application to molecular spectroscopy, and the study of surface phonons by monoatomic and monokinetic beams, and the study of intermolecular potentials and the onset of condensation. The phenomenology of supersonic beams can appear complex to those not experienced in supersonic gas dynamics and, as a result, the few existing reviews on the topic generally assume a limited level of knowledge. The book begins with a quantitative description of the fundamental laws of gas dynamics and goes on to explain such phenomena. It analyzes the evolution of the gas jet from the continuum to the regime of almost free collisions between molecules, and includes numerous figures, illustrations, tables and references.




Rarefied Gas Dynamics


Book Description

Aimed at both researchers and professionals who deal with this topic in their routine work, this introduction provides a coherent and rigorous access to the field including relevant methods for practical applications. No preceding knowledge of gas dynamics is assumed.